Получение древесного спирта в домашних условиях. Технология производства метанола

Вы в лесу... Вокруг теснятся толстые и тонкие стволы деревьев. Для химика все они состоят из одного и того же материала - древесины, основной частью которой является органическое вещество - клетчатка (C 6 H 10 O 5) х. Клетчатка образует стенки клеток растений, т. е. их механический скелет; довольно чистую мы её имеем в волокнах хлопчатой бумаги и льна; в деревьях она встречается всегда вместе с другими веществами, чаще всего с лигнином, почти такого же химического состава, но обладающего иными свойствами. Элементарная формула клетчатки C 6 H 10 O 5 совпадает с формулой крахмала, свекловичный сахар имеет формулу C 12 H 2 2O 11 . Отношение числа атомов водорода к числу атомов кислорода в этих формулах такое же, как и в воде: 2:1. Поэтому эти и им подобные вещества в 1844 г. были названы «углеводами», т. е. веществами, как бы (но не на самом деле) состоящими из углерода и воды.

Углевод клетчатка имеет большой молекулярный вес. Молекулы её представляют длинные цепи, составленные из отдельных звеньев. В отличие от белых зёрен крахмала, клетчатка представляет прочные нити и волокна. Это объясняется различным, теперь точно установленным, структурным строением молекул крахмала и клетчатки. Чистая клетчатка в технике зовётся целлюлозой.

В 1811 г. академик Кирхгоф сделал важное открытие. Он взял обыкновенный крахмал, полученный из картофеля, и подействовал на него разбавленной серной кислотой. Под действием H 2 SO 4 произошёл гидролиз крахмала и он превратился в сахар:

Эта реакция имела важное практическое значение. На ней основано крахмало-паточное производство.

Но ведь клетчатка имеет ту же самую эмпирическую формулу, что и крахмал! Значит, из неё тоже можно получить сахар.

Действительно, в 1819 г. было впервые осуществлено и осахаривание клетчатки с помощью разбавленной серной кислоты. Для этих целей можно применять и концентрированную кислоту; русский химик Фогель в 1822 г. получил сахар из обычной бумаги, действуя на неё 87-процентным раствором H 2 SO 4 .

В конце XIX в. получение сахара и спирта из дерева стало интересовать уже и инженеров-практиков. В настоящее время спирт из целлюлозы получают в заводских масштабах. Способ, открытый в пробирке учёного, стад осуществляться в больших стальных аппаратах инженера.

Посетим гидролизный завод... В огромные варочные котлы (перколяторы) загружают опилки, стружки или щепу. Это - отходы лесопильных или деревообрабатывающих предприятий. Раньше эти ценные отходы сжигались или просто выбрасывались на свалку. Через перколяторы непрерывным током проходит слабый (0,2-0,6%) раствор минеральной кислоты (чаще всего серной). Долго держать одну и ту же кислоту в аппарате нельзя: содержащийся в ней сахар, полученный из древесины, легко разрушается. В перколяторах давление 8-10 ат, а температура 170-185°. При этих условиях гидролиз целлюлозы идёт значительно лучше, чем при обычных условиях, когда процесс весьма затруднителен. Из перколяторов получают раствор, содержащий около 4% сахара. Выход сахаристых веществ при гидролизе достигает 85 % от теоретически возможного (по уравнению реакции).

Рис. 8. Наглядная схема получения гидролизного спирта из древесины.

Для Советского Союза, имеющего необозримые лесные массивы и неуклонно развивающего промышленность синтетического каучука, получение спирта из древесины представляет особый интерес. Ещё в 1934 г. XVII съезд ВКП(б) постановил всемерно развивать производство спирта из опилок и отходов бумажной промышленности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. За годы второй и третьей пятилеток у нас были построены и пущены заводы по выработке гидролизного спирта - спирта из древесины. Этот спирт в настоящее время всё в больших количествах перерабатывается в синтетический каучук. Это - спирт из непищевого сырья. Каждый миллион литров гидролизного этилового спирта освобождает для питания около 3 тыс. тонн хлеба или 10 тыс. тонн картофеля и, следовательно, около 600 га посевной площади. Для получения этого количества гидролизного спирта нужно 10 тыс. тонн опилок с 45-процентной влажностью, что может дать за год работы один лесопильный завод средней производительности.

Как из опилок получать спирт либо другое жидкое топливо?

  1. в германии в конце 2мир.войны все танки ездили на синтетич. топливе из опилок. а на спирте машины в Бразилии очень даже ездят, 20% машин там на спирту. так что и правда, можно воспользоваться брожением, перегнать и получить спирт и будет вам авто
    может быть можно и метан с помощью бактерий получить? тогда еще лучше
  2. Поделюсь опытом, так и быть! Вообщем, берешь 1КГ. опилок древесных или др. очень тчательно сушишь, затем добавляешь в колбу или еще что-то через холодильник (там будет возгонка) электролит (серную кислоту) 1/3 объема.. Советую, в Лабтехе купить холодильник 450 и не париться. нагреваешь, дотемпературы 150 градусов, и получаешь Метиловый Спирт, и там же его эфиры и др. ГОРЮЧИИ продукты реакции. жидкость может быть разных цветов. но обычно голубоватая, легколетучая. Да, будешь готовить не забудь добавить кусочки Корунда(оксид алюминия) ,- это катализатор. как только, жидкость в сосуде или колбе почернеет, до не узнаваемости, меняй и заливай следующию порцию. с 1 кг получишь где-то 470мл. спирта, а всего 700 с чем-то. Делай это в открытой местности, хорошо проветриваемой и в дали от еды.Да, маску и респиратор не забудь. Черную (отработавшую) жидкость процеди, и верхний слой после просушки очень хорошо горит. это тоже добавь в топливо.
  3. Из хвойных пород - плохо. Обычно гидролизный спирт получают из лиственных. Здесь, собственно, два варианта и оба практически не реализуемые в домашних условиях. А водка-табуретовка по большому счту - шутка, так как производство неэффективно и употребление конечного продукта может быть опасно для здоровья. Первый вариант. Надо сложить опилки в достаточно большую кучу на улице, намочить водой и оставить на пару лет (именно два года или больше). В центре кучи поселятся анаэробные микроорганизмы, которые будут постепенно осуществлять распад целлюлозы до мономеров (сахаров), которые уже можно сбродить. Далее - как обычный самогон. Или второй вариант, который реализуется в промышленности. Опилки варят со слабым раствором серной кислоты при повышенном давлении. В этом случае гидролиз целлюлозы осуществляется за несколько часов. Далее - перегонка как обычно.
    Если рассматривать не только этиловый спирт, то можно пойти другим путм, но он, опять же, практически не реализуем в домашних условиях. Это - сухая перегонка опилок. Сырь необходимо нагреть в герметичной мкости до 800-900 град. и собирать выходящие газы. При охлаждении этих газов конденсируется креозот (основной продукт), метанол и уксусная кислота. Газы - смесь разнообразных углеводородов. Остаток- древесный уголь. Именно такой уголь в промышленности называют древесным, а не из костра. Он раньше применялся в металлургии вместо кокса. После его дополнительной обработки получают активированный уголь. Креозот - смола, которой смолят шпалы и телеграфные столбы. Газ можно использовать как обычный природный. Теперь жидкости. Метиловый, или древесный, спирт, отгоняют из жидкости при температуре до 75 град. Может сойти за топливо, но выход мал и он очень ядовит. Далее уксусная кислота. При е нейтрализации известью получается ацетат кальция, или, как раньше его называли, серый древесноуксусный порошок. При его прокаливании получается ацетон - чем не топливо? Правда, сейчас ацетон получают полностью синтетическим путм.
    Вроде ничего не забыл. Ну что, когда открываем креозотовую лавку?
  4. "А если б водку гнать не из опилок, то че б нам было, с пяти бутылок?" (В.С. Высоцкий)
  5. сбраживание сахаристых веществ. например целлюлоза. только для ускорения нужен фермент-дрожжи. а по-поводу метилового спирта....ну вообщето при малых дозах, он смертельно опасен.
  6. Возгонкой.
  7. Надо целюлозу перебродить, потом перегнать

Опилки – ценное сырье для производства различных спиртов, которые можно использовать в качестве горючего .

На таком биотопливе могут работать:

  • автомобильные и мотоциклетные бензиновые двигатели;
  • электрогенераторы;
  • хозяйственная бензиновая техника.

Основная проблема , которую приходится преодолевать при изготовлении биотоплива из опилок – это гидролиз, то есть превращение целлюлозы в глюкозу.

Основа у целлюлозы и глюкозы одна – углеводороды. Но для превращения одного вещества в другое необходимы различные физические и химические процессы.

Основные технологии для преобразования опилок в глюкозу можно поделить на два типа:

  • промышленные , требующие сложного оборудования и дорогих ингредиентов;
  • домашние , не требующие какого-то сложного оборудования.

Вне зависимости от способа гидролиза, опилки необходимо максимально измельчить. Для этого применяют различные дробилки.

Чем меньше размер опилок, тем более эффективным будет разложение древесины на сахар и другие компоненты.

Найти более подробную информацию об оборудовании для измельчения опилок вы сможете здесь: . Никакой другой подготовки опилки не требуют.

Промышленный способ

Опилки засыпают в вертикальный бункер, затем заливают раствором серной кислоты (40 %) в соотношении 1:1 по массе и, закрыв герметично, нагревают до температуры 200–250 градусов.

В таком состоянии опилки держат 60–80 минут, постоянно перемешивая.

За это время проходит процесс гидролиза и целлюлоза, впитывая воду, распадается на глюкозу и другие составляющие.

Полученное в результате этой операции вещество процеживают , получая смесь раствора глюкозы с серной кислотой.

Очищенную жидкость сливают в отдельную емкость и смешивают с раствором мела, который нейтрализует кислоту .

Затем все отфильтровывают и получают:

  • ядовитые отходы;
  • раствор глюкозы.

Недостаток этого метода в:

  • высоких требованиях к материалу, из которого изготовлено оборудование;
  • больших расходах на регенерацию кислоты,

поэтому широкого распространения он не получил.

Существует и менее затратный метод , в котором используют раствор серной кислоты крепостью 0,5–1 %.

Однако для эффективного гидролиза необходимы:

  • высокое давления (10–15 атмосфер);
  • нагрев до 160–190 градусов.

Время протекания процесса 70–90 минут.

Оборудование для такого процесса можно изготовить из менее дорогих материалов, ведь столь разбавленный раствор кислоты менее агрессивен, чем тот, который применяют в описанном выше методе.

А давление в 15 атмосфер не является опасным даже для обычного химического оборудования, ведь многие процессы также проходят при высоком давлении.

Для обоих методов применяют стальные, герметично закрывающиеся емкости объемом до 70 м³, выложенные изнутри кислотоупорным кирпичом или плиткой.

Такая футеровка защищает металл от контакта с кислотой.

Нагревают содержимое емкостей, подавая в них раскаленный пар.

Сверху устанавливают спускной клапан, который настраивают на необходимое давление. Поэтому излишки пара выходят в атмосферу. Остальной пар создает необходимое давление.

В обоих методах задействован один и тот же химический процесс . Под воздействием серной кислоты целлюлоза (C6H10O5)n впитывает воду H2O и превращается в глюкозу nC6H12O6, то есть смесь различных сахаров.

После очистки эту глюкозу используют не только для получения биотоплива, но и для производства:

  • питьевого и технического спирта;
  • сахара;
  • метанола.

Оба метода позволяют перерабатывать древесину любых пород, поэтому являются универсальными.

В качестве побочного продукта переработки опилок в спирт получают лигнин – вещество, склеивающее:

  • пеллеты;
  • брикеты.

Поэтому лигнин можно продавать предприятиям и предпринимателям, которые занимаются производством пеллет и брикетов из отходов древесины.

Еще один побочный продукт гидролиза – фурфурол. Это маслянистая жидкость, эффективный антисептик для обработки древесины.

Фурфурол также применяют для:

  • очистки нефти;
  • очистки растительного масла;
  • производства пластмасс;
  • создания противогрибковых лекарств.

В процессе обработки опилок кислотой выделяются ядовитые газы , поэтому:

  • все оборудование необходимо монтировать в проветриваемом цеху;
  • работники должны надевать защитные очки и респираторы.

Выход глюкозы по массе составляет 40–60 % от веса опилок, но с учетом большого количества воды и примесей вес продукта в несколько раз больше исходного веса сырья .

Лишняя вода будет удалена в процессе перегонки.

Кроме лигнина побочными продуктами обоих процессов являются:

  • алебастр;
  • скипидар,

которые можно продать, получив какую-то прибыль.

Очистка раствора глюкозы

Очистку проводят в несколько этапов:

  1. Механическая очистка с помощью сепаратора удаляет из раствора лигнин.
  2. Обработка меловым молоком нейтрализует кислоту.
  3. Отстаивание разделяет продукт на жидкий раствор глюкозы и карбонаты, которые затем используют для получения алебастра.

Вот описан технологический цикл переработки древесины на гидролизном заводе в городе Тавда (Свердловская Область).

Домашний способ

Этот способ проще, но занимает в среднем 2 года. Опилки насыпают большой кучей и обильно поливают водой, после чего:

  • накрывают чем-нибудь;
  • оставляют преть.

Температура внутри кучи поднимается и начинается процесс гидролиза, в результате которого целлюлоза превращается в глюкозу , которую можно использовать для брожения.

Минус этого метода в том, что при низкой температуре активность процесса гидролиза снижается, а при отрицательной полностью прекращается.

Поэтому такой метод эффективен лишь в теплых регионах.

Кроме того, велика вероятность перерождения процесса гидролиза в гниение , из-за чего получится не глюкоза, а ил, а вся целлюлоза превратится в:

  • углекислый газ;
  • небольшое количество метана.

Иногда в домах строят установки, подобные промышленным. Их изготавливают из нержавеющей стали, которая без последствий выдерживает воздействие слабого раствора серной кислоты.

Нагревают содержимое таких аппаратов с помощью:

  • открытого огня (костер);
  • змеевика из нержавеющей стали с циркулирующим по нему раскаленным воздухом или паром.

Закачивая в емкость пар или воздух и отслеживая показания манометра, регулируют давление в емкости. Процесс гидролиза начинается при давлении в 5 атмосфер, но наиболее эффективно протекает при давлении 7–10 атмосфер .

Затем так же, как и при промышленном производстве:

  • очищают раствор от лигнина;
  • обрабатывают с помощью раствора мела.

После этого раствор глюкозы отстаивают и сбраживают с добавлением дрожжей.

Брожение и перегонка

Для брожения в раствор глюкозы добавляют обычные дрожжи, которые активизируют процесс брожения.

Эту технологию используют как на предприятиях, так и при получении спирта из опилок в домашних условиях.

Время брожения 5–15 дней , в зависимости от:

  • температуры воздуха;
  • породы древесины.

Процесс брожения контролируют по количеству образования пузырьков углекислого газа.

Во время брожения происходит такой химический процесс – глюкоза nC6H12O6 распадается на:

  • углекислый газ (2CO2);
  • спирт (2C2H5OH).

После окончания брожения материал подвергают перегонке – нагреву до температуры 70–80 градусов и охлаждению отходящего пара.

При такой температуре из раствора испаряются:

  • спирты;
  • эфиры,

а вода и водорастворимые примеси остаются.

  • охлаждения пара;
  • конденсации спирта

используют змеевик, погруженный в холодную воду или охлаждаемый холодным воздухом.

Для увеличения крепости готового продукта его перегоняют еще 2–4 раза, постепенно снижая температуру до значения 50–55 градусов.

Крепость полученного продукта определяют с помощью спиртометра, который оценивает удельную плотность вещества.

В качестве биотоплива можно использовать продукт перегонки с крепостью не менее 80 % . В менее крепком продукте слишком много воды, поэтому техника будет работать на нем неэффективно.

Хотя спирт, полученный из опилок, очень похож на самогон, его нельзя использовать для питья из-за большого содержания метанола, который является сильным ядом. Кроме того, большое количество сивушных масел портит вкус готового продукта.

Чтобы очистить от метанола, необходимо:

  • первую перегонку проводить при температуре 60 градусов;
  • слить первые 10 % полученного продукта.

После перегонки остаются:

  • тяжелые фракции скипидара ;
  • дрожжевая масса , которую можно использовать как для сбраживания следующей партии глюкозы, так и для получения кормовых дрожжей.

Они более питательны и полезны, чем зерно любых злаковых культур, поэтому их охотно покупают фермерские хозяйства, разводящие крупный и мелкий скот.

Применение биотоплива

По сравнению с бензином у биотоплива (спирта, полученного из переработанных отходов) есть как преимущества, так и недостатки.

Вот основные преимущества:

  • высокое (105–113) октановое число;
  • меньшая температура горения;
  • отсутствие серы;
  • меньшая цена.

Благодаря высокому октановому числу можно увеличить степень сжатия , повысив мощность и экономичность мотора.

Меньшая температура сгорания:

  • увеличивает срок службы клапанов и поршней;
  • снижает нагрев двигателя в режиме максимальной мощности.

Благодаря отсутствию серы, биотопливо не загрязняет воздух и не сокращает срок службы моторного масла , ведь оксид серы окисляет масло, ухудшая его характеристики и снижая ресурс.

Благодаря значительно менее высокой цене (если не считать акцизы), биотопливо серьезно экономит семейный бюджет.

Есть у биотоплива и недостатки:

  • агрессивность по отношению к резиновым деталям;
  • низкое массовое соотношение топливо/воздух (1:9);
  • слабая испаряемость.

Биотопливо повреждает резиновые уплотнители , поэтому во время переделки мотора для работы на спирту все резиновые уплотнители меняют на полиуретановые детали.

Из-за меньшего соотношения топливо-воздух для нормальной работы на биотопливе необходима перенастройка топливной системы, то есть установка жиклеров большего сечения в карбюратор или перепрошивка контроллера инжектора.

Из-за слабой испаряемости затруднен пуск холодного двигателя при температуре ниже плюс 10 градусов.

Чтобы решить эту проблему, биотопливо разбавляют бензином в соотношении 7:1 или 8:1.

Для работы на смеси бензина и биотоплива в соотношении 1:1 никакой переделки двигателя не требуется.

Если же спирта будет больше, то желательно:

  • заменить все резиновые уплотнители на полиуретановые;
  • прошлифовать головку блока цилиндров.

Шлифовка необходима для увеличения степени сжатия, что позволит реализовать более высокое октановое число . Без такой переделки двигатель будет терять в мощности при добавлении в бензин спирта.

Если же биотопливо используют для электрогенераторов или бытовых бензиновых приборов, то желательна замена резиновых деталей на полиуретановые.

В таких устройствах можно обойтись без шлифовки головки, потому что небольшая потеря мощности компенсируется увеличением подачи топлива. Кроме того, потребуется перенастройка карбюратора или инжектора , это сможет сделать любой специалист по топливным системам.

Более подробно о применении биотоплива и переделке моторов для работы на нем читайте в этой статье (Применение биотоплива).

Видео по теме

О том, как сделать спирт из опилок, вы можете увидеть в данном видео:

Выводы

Производство спирта из опилок – сложный процесс , который включает в себя массу операций.

Если есть дешевые или бесплатные опилки, то, заливая биотопливо в бак своего автомобиля, вы серьезно сэкономите, ведь его производство обходится заметно дешевле бензина.

Теперь вы знаете, как получить спирт из опилок, применяемый в качестве биотоплива и как это можно сделать в домашних условиях.

Кроме того, вы узнали о побочных продуктах , которые возникают в процессе переработки опилок в биотопливо. Эти продукты также можно продать, получив пусть и небольшую, но все же выгоду.

Благодаря этому бизнес по производству биотоплива из опилок становится весьма выгодным , особенно если использовать топливо для собственного транспорта и не платить акцизный сбор на продажу спирта.

Вконтакте

Производство этилового спирта из биомассы опилок реализуется тремя способами:

  • методом гидролиза древесины опилок с последующим сбраживанием гидролизата соответствующими дрожжами в этанол,
  • газификация древесины опилок и др твердых бытовых отходов ТБО медодом пиролиза с образованием синтез-газа (СО + Н2) и последующим сбраживанием синтез-газа соответствующими бактериями в этанол,
  • пиролизным разложением древесины опилок и ТБО с образованием синтез-газа, получением из синтез-газа метилового спирта и последующей каталитической конверсией метанола в этанол (реакция гомологенизации).
  • При гидролизном способе выход спирта составит лишь 200 литров из 1 тонны опилок. А при пиролизном способе переработки выход спирта составит 400 литров из 1 тонны опилок. И себестоимость производства спирта во втором случае - 10 руб / литр и зависит от масштаба производства и стоимости опилок.

    Сравнение разных видов биотоплива

    Биотопливо

    Годовой выход с 1-го гектара земли

    Биотопливо = Эквивалент

    Цена

    Рапсовое масло

    1 480 литров

    1 литр = 0,96 литра Дизеля

    1,18 Евро (май 2008)

    Метиловый эфир рапсового масла (Биодизель)

    1 550 литров

    1 литр = 0,91 литра Дизеля

    1,40 Евро (июнь 2008)

    Биоэтанол

    2 560 литров

    1 литр = 0,65 литра Бензина

    Биомасса в жидкость BtL

    4 030 литров

    1 литр = 0,97 литра Дизеля

    Биометан

    3 540 килограмм

    1 кг = 1,40 литров Бензина

    0,93 Евро (июнь 2008)

    На основании этих данных можно сделать вывод, что экономически более целесообразно микробиологическое получение этанола из продуктов газификации биомассы методом пиролиза.

    Физические свойства, нахождение в природе и строение целлюлозы / клетчатки.

    Целлюлоза древесины, или клетчатка - это полисахарид, представляющий собой основное вещество из которого строятся стенки растительных клеток (целлула - клетка). Клетчатка является основной составной частью древесины (до 70%), содержится в оболочке плодов, семян и т.д. и не встречается в составе животных организмов. Клетчатка представляет собой твёрдое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

    Хлопок представляет собой почти чистую клетчатку; волокна льна и конопли в основном также состоят из клетчатки; в древесине клетчатка составляет около 50%. Бумага, хлопчатобумажные ткани - это изделия из клетчатки. Клетчатку содержат и многие пищевые продукты (мука, крупа, картофель, овощи)

    Обычно клетчатке в древесине сопутствует так называемые - гемицеллюлозы (полуклетчатка) - полисахариды, образованные пентозами (пентозаны) и имеют состав (С5Н8О4)х, а также такими гексозами как манноза (маннаны) или галактоза (галактаны). Кроме того в древесине имеется лигнин - очень сложное вещество, содержащее шестичленные бензольные кольца...

    Таблица. Компонентный состав древесины осины и соломы, % пшеницы

    Сырьё

    Целлюлоза

    Лигнин

    Гемицеллюлоза

    Экстрактивные вещества

    Зола

    Солома пшеницы

    48,7

    21,4

    23,2

    Осина обыкновенная

    46,3

    21,8

    24,0

    Молекулярный вес клетчатки велик и достигает нескольких миллионов. Как и у крахмала, молекулы клетчатки состоят из звеньев С6Н10О5. Таких звеньев в молекулах клетчатки имеется от нескольких сотен до нескольких десятков тысяч. Поэтому состав клетчатки выражают, подобно крахмалу, формулой (С6Н10О5)

    n . По своему строению клетчатка, однако, отличается от крахмала тем, что структура молекул клетчатки имеет не разветвлённую, а нитевидную структуру, вследствие чего клетчатка может образовывать волокна.

    Изучение реакций этерификации клетчатки (см. ниже) приводит к заключению, что в каждом звене С 6 Н 10 О 5 содержится три гидроксильные группы. На этом основании молекулярную формулу клетчатки изображают так:

    Химические свойства и применение клетчатки. На клетчатку при обычной температуре не действуют разбавленные кислоты и щёлочи, но действуют концентрированные кислоты.

    Если в смесь концентрированных кислот - азотной и серной (нужной в качестве водоотнимающего средства) - поместить на 8-10 минут комочек ваты (клетчатки), произойдёт реакция этерификации: получится сложный эфир клетчатки и азотной кислоты - нитроклетчатка. По внешнему виду нитроклетчатка почти не отличается от обычной клетчатки, но при поджигании на воздухе она моментально сгорает (комочек нитрованной ваты при сгорании на ладони не успевает её обжечь), при нагревании в замкнутом пространстве и от детонации она взрывается. В зависимости от количества этерифицирующихся гидроксильных групп образуются зфиры с разным содержанием азота. Полное нитрование клетчатки приводит к образованию тринитроклетчатки:

    При нагревании с разбавленными кислотами клетчатка, как и крахмал, подвергается гидролизу, превращаясь в конечном счёте в глюкозу:

    (С 6 Н 10 О 5) n +

    nH 2 O ==> nC 6 H 12 O 6

    Продукты переработки целлюлозы/клетчатки методом гидролиза находят разнообразное применение (См. рисунок.Структура и переработка целлюлозы (клетчатки) методом гидролиза). В виде древесины она идёт на постройки и многочисленные изделия. Из клетчатки (древесной целлюлозы) делают бумагу. Из волокон конопли, льна, хлопка изготовляют ткани, нити, верёвки. Путём химической переработки клетчатки готовят спирт, искусственный шёлк, взрывчатые вещества и многое другое.

    Производство гидролизного спирта из опилок. Так как клетчатка при гидролизе даёт глюкозу, а глюкозу, как известно, можно превратить в этиловый спирт (этанол) или бутиловый спирт (бутанол), то, следовательно, спирт можно получать путём химической переработки древесины.

    Получение этилового спирта из древесины опилок по одному из способов осуществляется следующим образом. Следует понимать, что производство спирта из древесины путем гидролиза древесины и последующего сбраживания всегда является более металлоемким и затратным, чем например газификация древесины с последующим каталитическим превращением полученного синтез-газа в спирт или бензиновые фракции.

    В гидролизном аппарате нагревают с серной кислотой древесные отходы, например опилки и щепу (см рисунок). Клетчатка при этом гидролизуется до глюкозы (см. выше). Серную кислоту затем нейтрализуют известковым раствором и образующийся осадок СаSО4 отделяют. Полученный раствор глюкозы подвергают брожению в больших чанах в присутствии дрожжей. После брожения раствор отделяют от дрожжей и в ректификационных колоннах отгоняют из него спирт; дрожжи направляют снова в бродильный чан.

    Из 1 тонны сухой древесины таким способом получают до 200 литров этилового спирта (этанола); иными словами, 1 тонна опилок может заменить 1 тонну картофеля или 300 кг зерна в производстве спирта. Если учесть, что в производстве синтетического каучука и других продуктов потребляется большое количество спирта, то станет понятным, какое огромное значение имеет производство этилового спирта из древесины для сбережения пищевого сырья.

    В России получение спирта из древесины опилок осуществляется на ряде гидролизных заводов. Смотри пример получения смесевого бензина Е-85 (85% этанол + 15% бензин) на ООО "Кировский БиоХимЗавод" . Многотоннажным отходом гидролизного производства спирта из опилок является лигнин, разложение которого на свалке воздух явно не ароматизирует. Но, по утверждению американских ученых никелевый катализатор переработает лигнин .

    Следующий, не менее интересный способ переработки древесины опилок - пиролиз, получение синтез-газа (смесь СО и Н2) и последующий синтез спиртов, синтетического бензина, дизельного топлива и прочего.

    Успеха в качественном развитии данного направления удалось добиться ученым Института Нефтехимического Синтеза им. А.В. Топчиева РАН, которые разработали технологию, обеспечивающую получение по максимально простой и экономичной схеме переработки целлюлозы древесины высокооктанового экологически чистого синтетического бензина с хорошим выходом конечного продукта, удовлетворяющего перспективным требованиям стандарта Евро-4.

    Сущность их метода получения синтетического бензина из целлюлозы древесины состоит в следующем.
    Сначала из целлюлозы древесины при повышенном давлении получают синтез-газ, содержащий водород, оксиды углерода, воду, оставшийся после его получения не прореагировавший углеводород, а также содержащий или не содержащий балластный азот. Затем, путем конденсации из синтез-газа выделяют и удаляют воду и потом осуществляют газофазный, одностадийный каталитический синтез диметилового эфира. Полученную таким образом газовую смесь без выделения из нее диметилового эфира под давлением пропускают над катализатором - модифицированным высококремнистым цеолитом - для получения бензина и охлаждают газовый поток для выделения синтетического бензина.

    Получение синтез-газа из целлюлозы древесины осуществляют различными способами, например, в процессе парциального окисления углеводородного сырья под давлением, обеспечивающим возможность его каталитической переработки без дополнительного компримирования (сжатия). Или же получают путем каталитического риформинга углеводородного сырья с водяным паром или путем автотермического риформинга. При этом процесс проводят при подаче воздуха, или воздуха, обогащенного кислородом, или чистого кислорода. Были отлажены и другие варианты. На третьей стадии осуществляется собственно процесс Фишера–Тропша, в котором происходит синтез жидких углеводородов на базе компонентов синтез-газа. Например, при пропускании синтез-газа (смеси окиси углерода СО и водорода Н2) над нагретым до 200°С катализатором, содер­жащим восстановленное железо (чистое железо Fe), образуются смеси преимущественно предельных углеводородов (синтетических бензинов).

    Впервые синтетическое жидкое топливо СЖТ в значительных количествах производили в Германии во время 2-й Мировой войны 1939-45, что было связано с недостатком нефти. Синтез проводили при 170-200 °С, давлении 0,1-1 Мн/м2 (1-10 am) с катализатором на основе Со; в результате получали бензин (когазин 1, или синтин) с октановым числом 40-55, высококачественное дизельное топливо (когазин II) с цетановым числом 80-100 и твёрдый парафин. Добавление 0,8 мл тетраэтилсвинца на 1 литр синтетического бензина повышало его октановое число с 55 до 74. Синтез с использованием катализатора на основе Fe проводился при 220 °С и выше, под давлением 1-3 Мн/м2 (10-30 am). Синтетический бензин, получаемый при этих условиях, содержал 60-70% олефиновых углеводородов нормального и разветвленного строения; его октановое число 75-78. В дальнейшем производство синтетического жидкого топлива СЖТ из CO и Н2 не получило широкого развития ввиду его высокой стоимости и малой эффективности используемых катализаторов. Кроме синтетического бензина и дизельного топлива, синтетическим путём вырабатывают высокооктановые компоненты топлив, добавляемые к ним для повышения антидетонационных свойств. К ним относятся: изооктан, получаемый каталитическим алкилированием изобутана бутиленами; полимербензин - продукт каталитической полимеризации пропан-пропиленовой фракции и др. См Лит.: Рапопорт И. Б., Искусственное жидкое топливо, 2 изд., М., 1955; Петров А. Д., Химия моторных топлив, М., 1953; Лебедев Н. Н., Химия и технология основного органического и нефтехимического синтеза, М., 1971.).

    Пар (при температуре 200°C и более) проходит над железом.

    В зависимости от температуры на стенках реактора образуется: Fe + H2O = FeO + H2 + тепло (ржавчина) или 3Fe + 4H2O = Fe3O4 + 4H2 + тепло (окалина).

    Это стандартные реакции получения водорода в промышленности. Затем отработавшие оксиды железа нужно восстановить обратно до железа.

    Делается это так: FeO + CO = Fe + CO2.

    СО получается, когда на раскаленную железку попадает CH (бензин).

    Синтетический бензин , полученный каталитическим гидрированием окиси углерода, обладает низким октановым числом; чтобы получить высокосортное топливо для двигателей внутреннего сгорания, его следует подвергнуть дополнительной обработке.

    Метиловый спирт (метанол) в промышленности в основном получается из синтез-газа, образующегося в результате конверсии природного газа метана. Реакция проводится при температуре 300-600 °С и давлении 200-250 кгс/см в присутствии окиси цинка и других катализаторов: СО + Н2 -----> CH3OH

    Получение метилового спирта (метанола) из синтез-газа изображено на упрощенной принципиальной схеме

    Гомологизация метанола до этанола. Гомологизацией называется реакция, в результате которой органическое соединение превращается в свой гомолог путем внедрения метиленовой группы СН2. В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола :

    Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление реакции до 250 атм, при этом степень превращения метанола в этанол составила 70%, а основной продукт - этанол образовывался с селективностью 40%. Побочными продуктами реакции являются ацетальдегид и эфиры уксусной кислоты. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов - иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90%. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.

    Изобутиловый спирт применяется для получения изобутилена, в качестве растворителя, а также в качестве сырья для получения некоторых флотореагентов и ускорителей вулканизации в резиновой промышленности.

    В промышленности изобутиловый спирт получают из окиси углерода СО и водорода Н2 аналогично синтезу метанола. Механизм реакции заключается в протекании следующих превращений:

    Дегидратация изобутилового спирта в изобутилен является каталитической реакцией. Отщепление воды от молекул изобутилового спирта происходит при 370 °С и давлении 3-4 ати. Пары спирта пропускают над катализатором - очищенным глиноземом (активной окисью алюминия)..


    Одна из общих технологических схем производства изобутилена дегидратацией изобутилового спирта представлена ниже.


    Последующей этерификацией изобутилена этиловым спиртом получают кислородосодержащую добавку к бензину - экологически чистый этил-трет-бутиловый эфир (ЭТБЭ), имеющий октановое число 112 пунктов (Исследовательский метод)..

    Этил-трет-бутиловый эфир ЕТВЕ – это продукт синтеза изобутилена с этанолом:

    Технологическая схема очень проста: компоненты сырья, нагретые в теплообменнике, проходят через реактор, где отводится избыточное тепло (реакция очень экзотермическая) и разделяются в двух колоннах.

    В первой ректификационной колонне от реакционной смеси отделяется н-бутан и бутилены, идущие затем на алкилирование (изомеризацию), а во второй – сверху готовый ЭТБЭ, а снизу избыток метанола, который возвращается в сырьевую смесь.

    Катализатором служит ионообменная смола (сульфокатиониты), степень конверсии составляет 94 % (по изобутилену), чистота получаемого ЭТБЭ – 99 %.

    На 1 тонну ЭТБЭ расходуется 360 кг этанола (100% этилового спирта) и 690 кг 100 %-го изобутилена.




    Рис. Схема получения ЭТБЭ:

    1 - реактор; 2, 3 - ректификационные колонны; Потоки: I - изобутилен; II - этанол; III - бутан и бутилены; IV - ЭТБЭ; V - рециркулят этанола.

    Теплота сгорания ЭТБЭ меньше, чем у бензинов, ЭТБЭ используются как высокооктановые добавки к бензинам, повышающие их ДНП и улучшающие распределение октановых чисел по низкокипящим фракциям бензина каталитического риформинга. Оптимальный эффект дает добавка 11 % смеси ЭТБЭ к 89-90 % базового бензина с ОЧ и /ОЧ и = 85/91, после чего получается бензин АИ-93, однако теплота сгорания его снижается с 42,70 МДж/кг (без добавки) до 41,95 МДж/кг.

      Уксусная кислота представляет собой органическое соединение с молекулярной формулой СН3СООН, и является предшественником для изготовления различных других химических веществ, которые служат различные отрасли промышленности конечных пользователей, такие как текстиль, краски, резины, пластмасс и других. Его основные сегменты применения включают изготовление мономера винилацетата (VAM), очищенной терефталевой кислоты (РТА), уксусный ангидрид, и сложноэфирные растворители (этилацетат и бутилацетат).

    Компетенция производителей уксусной кислоты: BP Plc (Великобритания), Celanese Corporation (США), компания Eastman Chemical Company (США), Daicel Corporation (Япония), Цзянсу Софо (Group) Co. Ltd. (Китай), LyondellBasell Industries NV (Нидерланды), Шаньдун Hualu-Hengsheng Chemical Co. Ltd. (Китай), Shanghai Huayi (Group) Company (Китай), Yankuang Cathay Coal Chemicals Co. Ltd. (Китай), и Kingboard Chemical Holdings Ltd. (Гонконг).

     Компания Celanese является одним из крупнейших в мире производителей ацетильных продуктов (промежуточных химических веществ, таких как уксусная кислота, практически для всех основных отраслей промышленности); ацетильные промежуточные продукты составляют около 45% от общего объема продаж. Celanese использует процесс карбонилирования метанола (реакцию метанола и монооксида углерода); использованный в реакции катализатор и полученный продукт (уксусная кислота), очищают с помощью дистилляции.

     В январе 2013 года, Celanese получил патент США (# 7863489) на прямой и селективный способ получения этанола из уксусной кислоты с использованием катализатора на основе платины / олова. Патент охватывает способ селективного получения этанола с помощью парофазной реакции уксусной кислоты в течение гидрирования на каталитической композиции с образованием этанола. В одном из вариантов осуществления настоящего изобретения реакция уксусной кислоты и водорода над катализатором платина / олово, нанесенным на оксид кремния, графит, силикат кальция или алюмосиликат, селективно производит этанол в паровой фазе при температуре около 250 °С.

     Себестоимость производствва этилового спирта через уксуную кислоту и качественные преимущества

     Цена на уксусную кислоту, уксусный ангидрид, мономер винилацетата в США

     Цены на уксусную кислоту, уксусный ангидрид, мономер винилацетата в Европе

     Цены на уксусную кислоту, уксусный ангидрид, мономер винилацетата в Азии

    Получаемая при помощи данного описания жидкость - метанол. Она известна также под названием метиловый (древесный) спирт и имеет формулу - СН 3 ОН.

    Метанол в чистом виде применяется в качестве растворителя и как высокооктановая добавка к моторному топливу, а также непосредственно как высокооктановое топливо (октановое число => 115).

    Это тот самый "бензин", которым заправляют баки гоночных мотоциклов и автомобилей.

    Как показывают зарубежные исследования, двигатель, работающий на метаноле, служит во много раз дольше чем при использовании привычного нам бензина, а мощность его, при неизменно рабочем объеме, повышается на 20%.

    Выхлоп двигателя, работающего на этом топливе, экологически чист и при проверке его на токсичность, вредных веществ не обнаруживается.

    Малогабаритный аппарат для получения этого топлива прост в изготовлении, не требует особых знаний и дефицитных деталей, безотказен в работе. Его производительность зависит от различных причин, в том числе и от габаритов.

    Аппарат, схема и описание сборки которого приведены ниже, при диаметре реактора всего 75 мм, выдает три литра готового топлива в час. При этом вся конструкция имеет вес около 20 кг и приблизительно следующие габариты: 20 см в высоту, 50 см в длину и 30 см в ширину.

    Химия процесса

    Не будем вдаваться глубоко в варианты химических процессов и для простоты расчётов будем считать, что при нормальных условиях (20°С и 760 мм.рт.ст.) из метана получается синтез-газ по следующей формуле:

    2СН 4 + О 2 —> 2СО + 4Н 2 + 16,1 ккал,

    из 44,8 л метана и 22.4 л кислорода выходит 44,8 л окиси углерода и 89,6 л водорода, затем из этих газов получают метанол по формуле:

    СО + 2Н 2 <=> СН 3 ОН

    из 22.4 л окиси углерода и 44.8 л водорода получается: 12г(С)+3г(Н)+16г(О)+1г(Н) = 32 г метанола.

    Значит, по законам арифметики из 22.4 л метана выходит 32 г метанола или приблизительно: из 1 м.куб метана синтезируется 1,5 кг 100%-го метанола (это ~2 литра).

    Реально же, из-за низкого КПД в бытовых условиях, из 1 м.куб. природного газа получится меньше 1 литра конечного продукта (для данного варианта предел - 1 л/ч!).

    На 2011 год цена 1 м.куб. бытового газа в России составляет 3.6-3.8 руб и постоянно повышается. Учитывая, что по теплотворной способности метиловый спирт вдвое хуже бензина, получаем эквивалентную цену, равную 7.5 руб. и, наконец-то, округляем до 8 руб. на прочие расходы - эл. энергия, вода, катализаторы, очистка газа,— все равно выходит гораздо дешевле бензина и означает, что "овчинка стоит выделки" при любом раскладе!

    В цену этого топлива не включена стоимость установки (при переходе на альтернативные виды топлив всегда требуются период самоокупаемости), в данном случае цена будет колебаться от 5 до 50 тыс. руб, в зависимости от производительности, автоматизации процессов и чьими силами будет изготавливаться.

    При самостоятельной сборке, обойдётся минимум 2, а макс.10 т. р. В основном деньги уйдут на токарные и сварочные работы, а также на подготовку компрессоров (можно от неисправного холодильника, тогда будет дешевле) и на материалы, из которых собирается этот агрегат.

    Внимание: метанол является ядом. Он представляет собой бесцветную жидкость с температурой кипения 65°С, имеет запах, подобный запаху обычного питьевого спирта, и смешивается во всех отношениях с водой и многими органическими жидкостями. Помните о том, что 50 миллилитров выпитого метанола смертельны, в меньших количествах отравление продуктами распада метанола вызывает потерю зрения!

    Принцип действия и работа аппарата

    Функциональная схема аппарата приведена на рис. 1.

    Водопроводная вода подключается ко «входу воды» (15) и, проходя далее, разделяется на два потока: один поток (очищается фильтром от вредных примесей) и через краник (14) и отверстие (С) входит в смеситель (1), а другой поток через краник (4) и отверстие (Ж) идет в холодильник (3), проходя через который вода, охлаждая синтез-газ и конденсат метанола, выходит через отверстие (Ю).

    Бытовой природный газ, очищенный от примесей серы и пахучих одорантов, подключается к трубопроводу «Вход газа» (16). Далее газ входит в смеситель (1) через отверстие (Б), в котором, смешавшись с паром воды, нагревается на горелке (12) до температуры 100 - 120°С. Затем из смесителя (1) через отверстие (Д) нагретая смесь газа и водяного пара входит через отверстие (В) в реактор (2).

    Реактор (2) заполнен катализатором №1, массовая доли: 25% NiO (оксид никеля) и 60% Al 2 O 3 (окись алюминия) , остальное 15% CaO (негашеная известь) и др. примеси, активность катализатора - остаточная объемная доля метана при конверсии с водяным паром углеводородного газа (метана), полностью очищенного от сернистых соединений, содержащего метан не менее 90%, при объемном соотношении пар:газ=2:1, не более:

    при 500°С - 37%
    при 700°С - 5%.

    В реакторе происходит образование синтез газа под воздействием температуры около 700°С, получаемой за счет нагрева горелкой (13). Далее нагретый синтез-газ входит через отверстие (Е) в холодильник (З), где он должен охладиться до температуры 30-40°С или ниже. Затем охлажденный синтез-газ через отверстие (И) выходит из холодильника и через отверстие (М) входит в компрессор (5), в качестве которого можно использовать компрессор от любого бытового холодильника.

    Далее сжатый синтез-газ с давлением 5-10 атм. через отверстие (Н) выходит из компрессора и через отверстие (О) поступает в реактор (6). Реактор (6) заполнен катализатором №2, состоящим из 80% меди и 20% цинка.

    В этом реакторе, который является самым главным узлом аппарата, образуется пары метанола. Температура в реакторе не должна превышать 270°С, что можно проконтролировать градусником (7) и регулировать краником (4). Желательно поддерживать температуру в пределах 200-250°С, можно и ниже.

    Затем пары метанола и не прореагировавший синтез-газ через отверстие (П) выходят из реактора (6) и через отверстие (Л) входят в холодильник (З), где пары метанола конденсируют и через отверстие (К) выходят из холодильника.

    Далее конденсат и не прореагировавший синтез-газ входят через отверстие (У) в конденсатор (8), где накапливается готовый метанол, который выходит из конденсатора через отверстие (Р) и краник (9) в какую-либо емкость.

    Отверстие (Т) в конденсаторе (8) служит для установки манометра (10), который необходим для контроля давления в конденсаторе. Оно поддерживается в пределах 5-10 атмосфер или больше в основном с помощью краника (11) и частично краника (9).

    Отверстие (Х) и краник (11) необходимы для выхода из конденсатора не прореагировавшего синтез газа, который идет на рециркуляцию обратно в смеситель (1) через отверстие (А), но как показала практика, выходные газы надо сжигать в фитиле, а не запускать обратно в систему. Да, это снижает КПД, но зато значительно упрощает настройку.

    Краник (9) регулируют так, чтобы постоянно выходил чистый жидкий метанол без газа.

    Лучше будет, если уровень метанола в конденсаторе будет увеличиваться, чем уменьшаться. Но самый оптимальный случай, когда уровень метанола будет постоянным (что можно проконтролировать путем встроенного стекла или какого-либо другого способа).

    Краник (14) регулируют так, чтобы в метаноле не было воды, а в смесителе образовывалось пара лучше меньше, чем больше.

    Запуск аппарата

    Открывают доступ газа, вода (14) пока закрыта, горелки (12), (13) работают. Краник (4) полностью открыт, компрессор (5) включен, краник (9) закрыт, краник (11) полностью открыт.

    Затем приоткрывают краник (14) доступа воды, а краником (11) регулируют нужное давление в конденсаторе, контролируя его манометром (10). Но не в коем случае не закрывайте краник (11) полностью!!!

    Далее, минут через пять, краном (14) и зажжённой горелкой (21) доводят температуру в реакторе (6) до 200-250°С. После этого горелку (21) гасят, она нужна только для предварительного подогрева, т.к. метанол синтезируется с выделением тепла. Затем чуть-чуть приоткрывают краник (9), из которого должна пойти струя метанола. Если она будет идти постоянно - приоткройте краник (9) чуть больше, если будет идти метанол в смеси с газом - приоткройте краник (14).

    Вообще, чем на большую производительность настроите аппарат, тем лучше.

    Данный аппарат желательно изготавливать из нержавеющей стали или железа. Все детали изготовлены из труб, в качестве тонких соединительных труб можно использовать медные трубки. В холодильнике необходимо сохранить соотношение X:Y=4, то есть, например, если X+Y=300 мм, то X должно быть равно 240 мм, а Y, соответственно, 60 мм. 240/60=4. Чем больше витков уместится в холодильнике с той и с другой стороны, тем лучше.

    Все краники применены от газосварочных горелок. Вместо краников (9) и (11) можно использовать редукционные клапана от бытовых газовых баллонов или капиллярные трубки от бытовых холодильников.

    Смеситель (1) и реактор (2) нагреваются в горизонтальном положении (см. чертеж).

    Ну вот, пожалуй, и все. В заключении хотелось бы добавить, что более прогрессивная конструкция для домашнего изготовления авто топлива была опубликована в нескольких номерах журнала «Приоритет» 1992-93 гг:
    №1-2 — общие сведения о получении метанола из природного газа.
    №3-4 — чертежи установки по переработке метана в метанол.
    №5-6 — монтаж, меры безопасности, контроля, инструкция по включению оборудования.


    Рисунок 1 - Принципиальная схема аппарата


    Рисунок 2 - Смеситель


    Рисунок 3 - Реактор


    Рисунок 4 - Холодильник


    Рисунок 5 - Конденсатор


    Рисунок 6 - Реактор

    Дополнения от Квасникова Игоря

    Случайно в поисковой системе наткнулся на вашу публикацию и очень заинтересовался её содержимым. После краткого ознакомления сразу всплыли неточности допущенные автором.

    Информация о "метанолке" публиковалась в журнале "Приоритет" за 1991, 92, 93 гг. ,но полностью готовый проект опубликован так и не был (зажали обещанные катализаторы для подписчиков).

    В данных номерах были чертежи реактора с электрической схемой управления и конструкция охладителя, после чего г-н Вакс (автор статьи) вежливо извинился и сообщил, что дальнейшая публикация прекращается по просьбе силовых структур СССР и для тех, кто захочет повторить данную установку, поле творчества неограничено. Рисунок 1(a) - Изменённая схема аппарата

    1-я ступень - как говорилось ранее, должна производится очистка газа и воды (бытовым фильтром, ещё лучше дистиллятором), чтобы не отравить сразу катализаторы 2 и 6 реакторов. Точнее придерживаться соотношения пар: газ, как 2: 1. Не должно быть возврата непрореагировавших продуктов в 1-ю ступень.

    2я ступень - конверсия метана начинается при t=~400°С, но при такой низкой t°С низкий процент конвертированного газа, самая оптимальная t=700°С, её желательно контролировать с помощью термопары.

    После реактора и холодильника в установке стоит манометр(10) и редукционный клапан(11) настроенный на давление 25-35 атм (выбор давления зависит от степени износа катализатора). Лучше применить два компрессора от холодильника для нагнетания достаточного давления синтез-газа.

    Конденсор (8) советую сделать не цилиндрической формы, а конической (это сделано с целью уменьшения площади испарения метанола) и с окошком для контроля за уровнем метанола. Подводятся прореагировавшие продукты сверху конуса с помощью трубки (у) Ø 8 мм.

    Трубка опущена в конический сосуд ниже дросселирующего отвода (Р) на 10 мм.

    Непрореагировавший синтез газ отводится через трубку (х) Ø 5мм которая вварена в вершину конуса, выходящий газ через эту трубку сжигается на её конце, для предотвращения ухода пламени в конусный сосуд конец трубки набит медной проволокой.

    Уровень метанола поддерживается 2/3 от общей высоты сосуда, для этого лучше сделать прозрачное окошко. Для обеспечения 100%-безопасности можно снабдить выходной фитиль термопарой, по сигналу которой (по отсутствию пламени) автоматически перекрывается подача газа в установку, для этих целей подойдёт любой регулятор от современных газовых плит.

    Каталичический способ получения метанола (древесного спирта) из природного газа во всех подробностях описан .


    gastroguru © 2017