Получение метилового спирта из древесины. Дополнения от Квасникова Игоря

Растёт спрос на биотоплива - горючие жидкости, изготовленные из возобновляемых биологических ресурсов. Один из них - древесина. Можно ли из древесины получать топливо, не уступающее нефтяному?

Первое, что нужно уяснить - это то, что именно бензина или керосина из дерева сделать нельзя. Оно не поддаётся разложению на углеводороды с прямой цепью, из которых главным образом состоят нефтепродукты. Однако это не означает, что из него нельзя получать вещества, способные заменить нефтепродукты.

Некоторые любят табуретовку

Первый в списке, конечно же, спирт. Из древесины можно получать два различных вида спирта. Первый, который так и называется древесным - по-научному метиловый спирт. Это вещество очень похоже на привычный этиловый спирт, как по горючести, так и по запаху и вкусу. Однако метиловый спирт отличается тем, что весьма ядовит, и приём его внутрь может привести к смертельному отравлению. Вместе с тем он является высококачественным моторным топливом, его октановое число даже выше, чем у этилового спирта, и намного выше, чем у обыкновенного бензина.

Технология получения метилового спирта из древесины очень проста. Он получается путём сухой перегонки, или пиролиза. Точнее, он является одной из составных частей жижки - смеси кислородсодержащих органических веществ, отделяющихся от свежевыгнанной древесной смолы. Однако выход полученного таким образом спирта слишком мал, чтобы он мог использоваться в качестве топлива. Это делает подобную технологию получения топлива бесперспективной.

Однако из древесины можно получить и этиловый спирт, в намного больших количествах. Этот спирт - так называемый гидролизный - получается при разложении целлюлозы, основного компонента древесины, с помощью серной кислоты. Вернее, при разложении целлюлозы получаются сахара, которые в свою очередь могут быть переработаны в спирт обычным путём. Этот способ получения этилового спирта весьма распространён в промышленности, именно гидролизным способом получают практически весь технический спирт, применяемый в непищевых целях.

Этиловый спирт может быть использован как непосредственно вместо бензина, так и в качестве присадки к бензину. Путём таких присадок получаются различные сорта биотоплива, популярные, в частности, в таких странах, как Бразилия.

Получение этилового спирта путём гидролиза древесины экономически несколько менее выгодно, чем получение его из различных сельскохозяйственных культур. Однако выгодной стороной такого способа получения биотоплива является то, что он не требует отведения сельскохозяйственных площадей под «топливные» культуры, не дающие пищевых продуктов, а позволяет использовать для его производства территории, задействованные в лесном хозяйстве. Это делает получение биотопливного этанола из древесины достаточно практичной технологией.

И терпентин на что-нибудь полезен

Недостатком этанола как топлива является его низкая теплота сгорания. При использовании в двигателях в чистом виде он даёт или меньшую мощность, или больший расход, чем бензин. Решить эту проблему помогает смешивание спирта с веществами с высокой теплотой сгорания. И не обязательно это продукты из нефти: в качестве такой присадки вполне годится скипидар, или терпентин.

Скипидар - тоже продукт переработки древесины, а если конкретно - хвойной: сосен, елей, лиственниц и других. Он достаточно широко применяется как растворитель, а наиболее очищенные его сорта находят применение в медицине. Однако лесоперерабатывающая промышленность в качестве побочного продукта производит большое количество так называемого сульфатного скипидара - низшего сорта, содержащего ядовитые примеси, не только неприменимого в медицине, но и находит весьма ограниченное применение в химической и лакокрасочной промышленности.

Вместе с тем скипидар из всех продуктов переработки древесины более всего похож на нефтепродукт, точнее - на керосин. Он отличается весьма высокой теплотой сгорания, может использоваться как горючее в керосиновых примусах, лампах, керогазах. Пригоден он и в качестве моторного топлива, правда, непродолжительное время: если его заливать в баки в чистом виде, двигатели вскоре выходят из строя из-за засмоления.

Однако скипидар можно использовать в качестве топлива не в чистом виде, а в качестве присадки к этанолу. Такая присадка не сильно снижает октановое число этилового спирта, но повышает теплоту его сгорания. Ещё одна положительная сторона такой технологии изготовления биотоплива в том, что скипидар денатурирует спирт, делает его непригодным для употребления внутрь в качестве алкоголя. А социальные последствия широкого внедрения неденатурированного спирта в качестве топлива могут стать весьма тяжелыми.

Лигниновые отходы - в доходы!

Такой компонент древесины, как лигнин, считается малополезным. Его применение в промышленности значительно менее широкое, нежели у целлюлозы. Несмотря на то, что он находит применение в производстве строительных материалов и в химической промышленности, чаще его просто сжигают прямо на лесохимпроизводстве. Однако, как выясняется, при пиролизе лигнина можно получить более разнообразные продукты, чем при пиролизе целлюлозы.

Лигнин состоит главным образом из ароматических циклов и коротких прямых углеводородных цепей. Соответственно, при его пиролизе получаются преимущественно углеводороды. Однако, в зависимости от технологии пиролиза, можно получать как продукт с высоким содержанием фенола и родственных ему веществ, так и жидкость, напоминающую нефтепродукты. Эта жидкость также пригодна в качестве присадки к этиловому спирту для получения биотоплива.

Разработаны технологии и установки для пиролиза, которые могут потреблять как лигнин из отвалов, так и неразделённые на лигнин и целлюлозу отходы древесины. Более высокие результаты получаются при смешивании лигнина или древесных отходов с мусором, состоящим из выброшенного пластика или резины: пиролизная жидкость получается более нефтеподобной.

Мирный атом и опилки

Ещё одна технология получения биотоплива из древесины разработана совсем недавно российскими учёными. Она относится к области радиохимии, то есть химических процессов, протекающих под воздействием радиоактивного излучения. В опытах учёных из ИФХЭ им. Фрумкина опилки и другие отходы древесины подвергались одновременному воздействию сильного бета-излучения и сухой перегонки, причём нагревание древесины проводилось именно с помощью сверхсильной радиации. Удивительно, но под воздействием радиации состав продуктов, получаемых при пиролизе, изменился.

В пиролизной жидкости, полученной «радиоактивным» способом, было обнаружено высокое содержание алканов и циклоалканов, то есть углеводородов, содержащихся главным образом в нефти. Эта жидкость получилась значительно легче нефти, сравнимой, скорее, с газоконденсатом. Причём экспертиза подтвердила пригодность этой жидкости для использования в качестве моторного топлива или переработки в высококачественные топлива, такие, как автомобильный бензин. Думаем, что это не заслуживает особого упоминания, но проясним ради успокоения страхов радиофобов: бета-излучение не способно вызывать наведённую радиоактивность, поэтому топливо, получаемое этим способом, безопасно и не проявляет радиоактивных свойств само.

Что пускать в переработку

Понятно, что предпочтительнее использовать для производства биотоплива не цельные стволы деревьев, а отходы переработки древесины, такие, как опилки, щепу, веточки, кору, да и тот же лигнин, который идёт в отвалы и печи. Выход этих отходов с гектара поваленного леса, конечно же, ниже, чем древесины в целом, но не следует забывать, что они получаются в качестве побочного продукта в производственных процессах, которые уже идут на многих предприятиях страны, соответственно, отходы производства дешевы и для их получения не нужно вырубать или засаживать под вырубку дополнительные площади леса.

В любом случае, древесина является ресурсом возобновляемым. Способы восстановления лесных площадей давно известны, а во многих регионах страны наблюдается даже и неконтролируемое зарастание лесом заброшенных сельскохозяйственных земель. Так или иначе, Российская Федерация не относится к странам, где к сбережению леса следует относиться со всем тщанием; площадей нашего леса и его потенциала к самовосстановлению вполне достаточно, чтобы загрузить полностью и лесоперерабатывающую промышленность, и производство биотоплив, и многие другие производства.

Гидролиз полисахаридов растительной ткани в холодной воде практически не наблюдается. При повышении температуры воды выше 100° гидролиз полисахаридов протекает, но настолько мед­ленно, что практического значения такой процесс не имеет. Удо­влетворительные результаты получаются только при при­менении катализаторов, из которых производственное значение имеют лишь сильные минеральные кислоты: серная и реже со­ляная. Чем выше концентрация сильной кислоты в растворе и температура реакции, тем быстрее протекает гидролиз поли­сахаридов до моносахаридов. Однако присутствие таких ката­лизаторов имеет и отрицательную сторону, так как они одно­временно с реакцией гидролиза полисахаридов ускоряют и реак­ции распада моносахаридов, соответственно снижая этим их выход.

При распаде гексоз в этих условиях вначале образуется окси — метилфурфурол, который быстро разлагается далее с образова­нием конечных продуктов: левулиновой и муравьиной кислот. Пентозы в этих условиях превращаются в фурфурол.

В связи с этим, чтобы получить из полисахаридов расти­тельной ткани моносахариды, необходимо обеспечить наиболее благоприятные условия для реакции гидролиза и максимально сократить возможности дальнейшего распада образующихся моносахаридов.

В этом заключается задача, которую решают исследователи и производственники при выборе оптимальных режимов гид­ролиза.

Из большого числа возможных вариантов концентрации кис­лоты и температуры реакции в настоящее время практически применяются только два: гидролиз разбавленными кислотами и гидролиз концентрированными кислотами. При гидролизе раз­бавленными кислотами температура реакции обычно составляет 160-190° и концентрация катализатора в водном растворе ко­леблется от 0,3 до 0,7% (H2S04, НС1).

Реакцию проводят в автоклавах под давлением 10-15 атм. При гидролизе концентрированными кислотами концентрация серной кислоты обычно составляет 70-80%, а соляной 37-42%. Температура реакции в этих условиях 15-40°.

Снизить потери моносахаридов легче при гидролизе концен­трированными кислотами, вследствие чего выход сахара при этом методе может достигать почти теоретически возможного, т, е. 650-750 кг из 1 т абсолютно сухого растительного сырья.

При гидролизе разбавленными кислотами снизить потери моносахаридов вследствие их разложения значительно труднее и поэтому практически выход моносахаридов в этом случае обычно не превышает 450-500 кг из 1 г сухого сырья.

Ввиду малых потерь сахара при гидролизе концентрирован­ными кислотами получающиеся водные растворы моносахари­дов - гидролизаты отличаются повышенной чистотой, что имеет большое значение при их последующей переработке.

Серьезным недостатком методов гидролиза концентрирован­ными кислотами до последнего времени был большой расход минеральной кислоты на тонну получаемого сахара, что приво дило к необходимости регенерации части кислоты или использо­вания ее в других производствах; это осложняло и удорожало строительство и эксплуатацию таких заводов.

Большие трудности возникали также при подборе для аппа­ратуры материалов, стойких в агрессивных средах. По этой при­чине основная масса действующих в настоящее время гидролиз­ных заводов была построена по методу гидролиза разбавленной серной кислотой.

Первый опытный гидролизно-спиртовый завод в СССР был пущен в январе 1934 г. в г. Череповце. Исходные показатели и технический проект этого завода были разработаны кафедрой гидролизных производств Ленинградской лесотехнической ака­демии в 1931 -1933 гг. На основе данных эксплуатации опытного завода было начато строительство в СССР промышленных гид — ролизно-спиртовых заводов. Первый промышленный гидролизно — спиртовый завод был пущен в Ленинграде в декабре 1935 г. Вслед за этим заводом в период 1936-1938 гг. вошли в строй Бобруйский, Хорский и Архангельский гидролизно-спиртовые заводы. Во время второй мировой войны и после нее было по­строено много больших заводов в Сибири и на Урале. В настоя­щее время проектная мощность этих заводов в результате со­вершенствования технологии перекрыта в 1,5-2 раза.

Основным сырьем для этих заводов является хвойная дре­весина в виде опилок и щепы, поступающая с соседних лесопиль­ных заводов, где ее получают путем измельчения в рубительных машинах отходов лесопиления - горбыля и рейки. В отдельных случаях измельчают и хвойные дрова.

Схема получения моносахаридов на таких заводах представ­лена на рис. 76.

Измельченная хвойная древесина со склада сырья по транс­портеру 1 поступает в направляющую воронку 2 и далее в горло-

Вину гидролизаппарата 3. Это вертикальный стальной цилиндр с верхним и нижним конусами и горловинами. Внутреннюю по­верхность такого гидролизаппарата покрывают кислотоупорны­ми керамическими или графитовыми плитками или кирпичом, укрепленным на слое бетона толщиной 80-100 мм. Швы между плитками заполняются кислотоупорной замазкой. Верхняя и ниж­няя горловины гидролизаппарата с внутренней стороны защи­щены от действия горячей разбавленной серной кислоты слоем кислотоупорной бронзы. Полезный объем таких гидролизаппа — ратов обычно составляет 30-37 At3, но иногда применяются так­же гидролизаппараты объемом 18, 50 и 70 м3. Внутренний диа­метр таких гидролизаппаратов составляет около 1,5, а высота 7-13 м. В верхний конус гидролизаппарата во время гидролиза по трубе 5 подается нагретая до 160-200° разбавленная серная кислота.

В нижнем конусе установлен фильтр 4 для отбора получен­ного гидролизата. Гидролиз в таких аппаратах производится пе­риодически.

Как уже указывалось выше, гидролизаппарат загружают измельченным сырьем через направляющую воронку. При за­грузке сырья через трубу 5 поступает нагретая до 70-90° раз­бавленная серная кислота, которая смачивает сырье, способ­ствуя его уплотнению. При таком методе загрузки в 1 м3 гид­ролизаппарата помещается около 135 кг опилок или 145-155 кг Щепы, в пересчете на абсолютно сухую древесину. По окончании загрузки содержимое гидролизаппарата подогревается острым паром, поступающим в нижний конус его. Как только будет достигнута температура 150-170°, в гидролизаппарат по тру­бе 5 начинает поступать 0,5-0,7’%-пая серная кислота, нагретая до 170-200°. Одновременно образующийся гидролизат через фильтр 4 начинает выводиться в испаритель б. Реакция гидро­лиза в гидролизаппарате продолжается от 1 до 3 часов. Чем короче время гидролиза, тем выше температура и давление в гидролизаппарате.

В процессе гидролиза полисахариды древесины переходят в соответствующие моносахариды, растворяющиеся в горячей разбавленной кислоте. Для предохранения этих моносахаридов от разложения при высокой температуре содержащий их гидро­лизат непрерывно в течение всей варки выводят через фильтр 4 И быстро охлаждают в испарителе 6. Так как по условиям про­цесса гидролизуемое растительное сырье. в гидролизаппарат" все время должно быть залито жидкостью, заданный уровень е поддерживается горячей кислотой, поступающей по трубе 5,

Такой метод работы носит название перколяция. Чем быст рее идет перколяция, т. е. чем быстрее через гидролизаппарат протекает горячая кислота, тем быстрее образующийся сахар выводится из реакционного пространства и тем меньше он раз­лагается. С другой стороны, чем быстрее идет перколяция, тем больше расходуется на варку горячей кислоты и тем меньше получается концентрация сахара в гидролизате и соответственно больше расход пара и кислоты на варку.

Практически для получения достаточно высоких выходов сахара (при экономически приемлемой концентрации его в гид­ролизате) приходится выбирать некоторые средние условия пер — коляции. Обычно останавливаются на выходе сахара в 45-50% от веса абсолютно сухой древесины при концентрации сахара в гидролизате 3,5-3,7 % — Эти оптимальные условия реакции соответствуют отбору через нижний фильтр из гидролизаппара — та 12-15 м3 гидролизата на 1 т абсолютно сухой древесины, загруженной в гидролизаппарат. Количество гидролизата, отби­раемого за варку на каждую тонну гидролизуемого сырья, назы­вают гидромодулем вытекания, и он является одним из основных показателей примененного на заводе режима гидролиза.

В процессе перколяции между верхней и нижней горловина­ми гидролизаппарата возникает некоторая разность давлений, способствующая сжатию сырья по мере растворения содержа­щихся в нем полисахаридов.

Сжатие сырья приводит к тому, что в конце варки остающий­ся нерастворенным лигнин занимает объем около 25% началь­ного объема сырья. Поскольку по условиям реакции жидкость должна покрывать сырье, уровень ее в процессе варки соответ­ственно снижается. Контроль за уровнем жидкости в процессе варки осуществляется при помощи весомера 30, показываю­щего изменение суммарного веса сырья и жидкости в гидролиз — аппарате.

По окончании варки в аппарате остается лигнин, содержащий на 1 кг сухого вещества 3 кг разбавленной серной кислоты, на-^ гретой до 180-190°.

Из гидролизаппарата лигнин выгружают в циклон 22 по тру^ бе 21. Для этой цели быстро открывают клапан 20, соединяю­щий внутреннее пространство гидролизаппарата с циклоном 22. Благодаря быстрому снижению давления между кусочками лиг­нина содержащаяся в нем перегретая вода мгновенно вскипает, образуя большие объемы пара. Последний рвет лигнин и увле­кает его в виде взвеси по трубе 21 в циклон 22. Труба 21 подхо­дит к циклону по касательной, благодаря чему струя пара с лигнином, врываясь в циклон, движется вдоль стенок, совер — шая вращательное движение. Лигнин центробежной силой от­брасывается к боковым стенкам и, теряя скорость, падает на дно циклона. Освобожденный от лигнина пар через центральную трубу 23 выбрасывается в атмосферу.

Циклон 22 обычно представляет собой вертикальный сталь-‘ ной цилиндр объемом около 100 м3, снабженный боковой двер­цей 31 и вращающейся мешалкой 25, которая помогает при вы­грузке лигнина со дна циклона на ленточный или скребковый транспортер 24.

Для предохранения от коррозии внутренняя поверхность циклонов иногда защищается слоем кислотоупорного бетона Как уже указывалось выше, в процессе перколяции в верхний конус гидролизаппарата подается нагретая разбавленная серная кислота. Ее приготовляют путем смешивания в кислотоупорном смесителе 17 перегретой воды, подаваемой по трубе 28, с холод­ной концентрированной серной кислотой, поступающей из мер­ного бачка 19 через поршневой кислотный насос 18.

Поскольку холодная концентрированная серная кислота слабо корродирует железо и чугун, эти металлы широко исполь­зуют для изготовления баков, насосов и трубопроводов, предна­значенных для ее хранения и транспортировки к смесителю. Ана­логичные материалы применяются и для подвода перегретой йоды к смесителю. Для защиты стенок смесителя от коррозии Применяют фосфористую бронзу, графит или пластическую мас­су - фторопласт 4. Последние два используются для внутренней футеровки смесителей и дают наилучшие результаты.

Готовый гндролизат из гидролизаппарата поступает в испа­ритель 6 высокого давления. Это - стальной сосуд, работающий под давлением и футерованный внутри керамическими плитка­ми, как и гидролизаппарат. В верхней части испарителя ем­костью 6-8 ж3 имеется крышка. В испарителе поддерживается давление на 4-5 атм ниже, чем в гидролизаппарате. Благодаря этому попадающий в него гидролизат мгновенно вскипает, час­тично испаряясь, и охлаждается до 130-140°. Образующийся пар отделяется от капель гидролизата и по трубе 10 поступает в решофер (теплообменник) 11, где конденсируется. Частично охлажденный гидролизат из испарителя 6 по трубе 7 поступает в испаритель 8 низкого давления, где охлаждается до 105-110° в результате вскипания при более низком давлении, обычно не превышающем одной атмосферы. Образующийся в этом испари­теле пар по трубе 14 подается во второй решофер 13, где также конденсируется. Конденсаты из решоферов 11 и 13 содержат 0,2-0,3% фурфурола и используются для его выделения на спе­циальных установках, которые будут рассмотрены ниже.

Тепло, содержащееся в паре, который выходит из испарите­лей 6 и 8, используется для нагрева воды, поступающей в сме­ситель 17. Для этой цели из бака 16 оборотной воды насосомТеплую воду, полученную из ректификационного отделения гид­ролизного завода, подают в решофер низкого давления 13, где она нагревается с 60-80° до 100-110°. Затем по трубе 12 подо­гретая вода проходит решофер высокого давления 11, где паром при температуре 130-140° подогревается до 120-130°. Дальше температуру воды повышают до 180-200° в водогрейной колон­не 27. Последняя представляет собой вертикальный стальной ци­линдр с дном и верхней крышкой, рассчитанными на рабочее давление 13-15 атм.

Пар в водогрейную колонку подают по вертикальной тру­бе 26, на конце которой укреплены 30 горизонтальных дисков 2Ь. Пар из трубы 26 проходит через щели между отдельными диска­ми в колонну, заполненную водой. Последняя непрерывно по­дается в колонну через нижний штуцер, смешивается с паром, нагревается до заданной температуры и по трубе 28 поступает в смеситель 17.

Гидролизаппараты устанавливают на специальном фундамен­те в ряд по 5-8 шт. На больших заводах число их удваивают и устанавливают их в два ряда. Трубопроводы для гидролизата изготовляют из красной меди или латуни. Арматура, состоящая из вентилей и клапанов, изготовляется из фосфористой или паспортной бронзы.

Описанный выше способ гидролиза является периодическим. В настоящее время испытываются новые конструкции гидролпз — аппаратов непрерывного действия, в которые при помощи спе­циальных питателей непрерывно подается измельченная древе­сина, непрерывно удаляется лигнин и гидролизат.

Ведутся также работы по автоматизации гидролизаппаратов периодического действия. Это мероприятие позволяет более точ­но соблюдать заданный режим варки и одновременно облегчает труд варщиков.

Кислый гидролизат из испарителя низкого давления 8 (рис. 76) по трубе 9 подают в аппаратуру для его последующей пере­работки. Температура такого гидролизата 95-98°. В нем содержится (в %):

Серной кислоты. . . ……………………………………………………………………………………………….. 0,5 -0,7:

Гексоз (глюкоза, манноза, галактоза)………………………………………………………….. 2,5 -2,8;

Пентоз (ксилоза, арабиноза)…………………………………………………………………………. 0,8 -1,0;

Летучих органических кислот (муравьиная, уксус­ная) …………………………….. 0,24-0,30;

Нелетучих органических кислот (левулиновая) . . 0,2 -0,3;

Фурфурола………………………………………………………………………………………………………. 0,03-0,05;

Оксиметилфурфурола……………………………………………………………………………………. 0,13-0,16;

Метанола. ……………………………………………………………………………………………………….. 0,02-0,03

В гидролизатах присутствуют также коллоидные вещества (лигнин, декстрины), зольные вещества, терпены, смолы и т. д. Содержание моносахаридов в растительных гидролизатах при точных химических исследованиях устанавливают путем коли­чественной бумажной хроматографии.

В заводских лабораториях при массовых экспрессных опре­делениях Сахаров используется способность их в щелочной среде восстанавливать комплексные соединения окиси меди с образо­ванием закиси меди:

2 Си (ОН)2 Си5 О + 2 Н2 О + 02.

По количеству образующейся закиси меди вычисляется со — i-фжание моносахаридов в растворе.

Такой метод определения Сахаров является условным, так Как одновременно с моносахаридами окись меди восстанавли­вают в закись также фурфурол, оксиметилфурфурол, декстрины, коллоидный лигнин. Эти примеси мешают определению истинно­го содержания сахара в гидролизатах. Общая ошибка здесь до­стигает 5-8%. Поскольку поправка на эти примеси требует большой затраты труда, ее обычно не делают, а полученные сахара в отличие от моносахаридов называют редуцирующими веществами или сокращено РВ. В заводских условиях учет ко­личества вырабатываемого сахара в гидролизате учитывают в тоннах РВ.

Для получения этилового спирта гексозы (глюкоза, манноза и галактоза) сбраживают спиртообразующими дрожжами - са­харомицетами или шизосахаромицетами.

Суммарное уравнение спиртового брожения гексоз

C(i Hf, 06 — 2 С2 НГ) ОН + 2 С02 Гексоза этиловый спирт

Показывает, что при этом процессе теоретически на каждые 100 кг сахара должно получаться 51,14 кг, или около 64 л 100%-ного этилового спирта и около 49 кг углекислоты.

Таким образом, при спиртовом брожении гексоз получается почти в равных количествах два основных продукта: этанол и углекислота. Для осуществления этого процесса горячий кис­лый гидролизат должен быть подвергнут следующей обработке.:

1) нейтрализации; 2) освобождению от взвешенных твердых частиц; 3) охлаждению до 30°; 4) обогащению гидролизата не­обходимыми для жизнедеятельности дрожжей питательными веществами.

Кислый гидролизат имеет рН=1 -1,2. Среда, пригодная для брожения, должна иметь рН = 4,6-5,2. Чтобы придать гидро — лизату необходимую кислотность, содержащиеся в нем свобод­ную серную и значительную часть органических кислот необ­ходимо нейтрализовать. Если все кислоты, содержащиеся в гидролизате, условно выразить в серной кислоте, то ее концен­трация составит около 1%. Остаточная кислотность гидролизата при рН = 4,6-5,2 составляет около 0,15%.

Поэтому для получения в гидролизате необходимой концен­трации ионов водорода, в нем должно быть нейтрализовано 0,85% кислот. При этом полностью нейтрализуется свободная серная, муравьиная и часть уксусной. Остаются свободными левулиновая кислота и небольшая часть уксусной.

Нейтрализуют гидролизат известковым молоком, т. е. суспен­зией гидрата окиси кальция в воде с концентрацией 150-200 г СаО в литре.

Схема приготовления известкового молока представлена нм рис. 77.

Негашеную известь СаО непрерывно подают в загрузочную воронку вращающегося известегасительного барабана 34. Одно­временно в барабан подают необходимое количество воды. При вращении барабана негашеная известь, связывая воду, перехо­дит в гидрат окиси кальция. Последний диспергируется в воде, образуя суспензию. Не прореагировавшие куски извести отде­ляются в конце барабана от известкового молока и сбрасыва­ются в вагонетку. Известковое молоко вместе с песком протекает по трубе в отделитель песка 35. Последний представляет собой горизонтально расположенное железное корыто с поперечными перегородками и продольным валом с лопастями.

Известковое молоко в этом аппарате медленно течет справа налево и далее по трубе 36 сливается в сборник 2.

Песок медленно оседает между перегородками отделителя песка и при помощи медленно вращающихся лопаток удаляется из аппарата. Перед поступлением известкового молока в нейтра­лизатор его смешивают с заданным количеством сернокислого аммония, раствор которого поступает из бачка 37. При смеше­нии известкового молока с сернокислым аммонием протекает реакция

Са (ОН)3 + (NH4)2 S04-> CaS04 + 2 NH, ОН, в результате которой часть извести связывается серной кислотой сернокислого аммония и образуются кристаллы плохо раствори­мого двухводного сернокислого кальция CaS04-2H20. Одновре­менно образуется аммиак, остающийся в известковом молоке в растворенном состоянии.

Присутствующие в известковом молоке мелкие кристаллы гипса при последующей нейтрализации являются центрами кристаллизации образующегося гипса и предохраняют от обра­зования пересыщенных растворов его в нейтрализованном гидро­лизате. Это мероприятие имеет важное значение при последую­щей отгонке спирта из бражки, так как пересыщенные растворы гипса в бражке вызывают гипсацию бражных колонн и быстро выводят их из строя. Такой метод работы получил название ней­трализации с направленной кристаллизацией гипса.

Одновременно с известковым молоком в нейтрализатор 5 Подаются слабокислый водный экстракт суперфосфата из мер­ника-бачка 38.

Соли даются в нейтрализатор из расчета 0,3 кг сернокислого аммония и 0,3 кг суперфосфата на 1 м3 гидролизата.

Нейтрализатор 5 (емкостью 35-40 м 3) представляет собой стальной бак, футерованный кислотоупорными керамическими плитками и снабженный вертикальными мешалками и тормозны­ми лопатками, укрепленными неподвижно на стенках бака. Ней­трализация на гидролизных заводах ранее производилась пе­риодически. В настоящее время она вытесняется более совершен­ной непрерывной нейтрализацией. На рис. 77 приведена послед­няя схема. Процесс осуществляется в двух последовательно со­единенных нейтрализаторах 5 и 6, имеющих одинаковое устрой­ство. Кислый гидролизат по трубе 1 непрерывно подается в пер­вый нейтрализатор, куда одновременно поступают известковое молоко и питательные соли. Контроль за полнотой нейтрализа­ции производят путем измерения концентрации ионов водорода при помощи потенциометра 3 с сурьмяным или стеклянным электродом 4. Потенциометр непрерывно записывает рН гидро­лизата и автоматически регулирует его в заданных пределах, посылая электрические импульсы реверсивному мотору, соеди­ненному с запорной арматурой на трубе, подающей известковое молоко в первый нейтрализатор. В нейтрализаторах сравнитель­но быстро протекает реакция нейтрализации и относительно медленно - процесс кристаллизации гипса из пересыщенного раствора.

Поэтому скорость протекания жидкости через нейтрализа — ционную установку обусловлена вторым процессом, требующим для своего окончания 30-40 мин.

По истечении этого времени нейтрализованный гидролизат, называемый «нейтрализатом», поступает в отстойник 7 полу­непрерывного или непрерывного действия.

Полунепрерывный процесс состоит в том, что нейтрализат протекает через отстойник непрерывно, а оседающий на дно его гипс удаляется периодически, по мере накопления.

При непрерывной работе отстойника все операции произво­дятся непрерывно. Перед спуском в канализацию шлам 8 в при­емнике дополнительно промывается водой. Последний способ из-за некоторых производственных трудностей еще не получил широкого распространения.

Гипсовый шлам из отстойника обычно состоит наполовину из двухводного сернокислого кальция и наполовину из лигнина и гуминовых веществ, осевших из гидролизата. На некоторых гидролизных заводах гипсовый шлам обезвоживают, высушива­ют и обжигают, превращая в строительный алебастр. Обезвожи­вают на барабанных вакуум-фильтрах, а высушивают и обжи­гают во вращающихся барабанных печах, обогреваемых топоч­ными газами.

Нейтрализат, освобожденный от взвешенных частиц, перед брожением охлаждается в холодильнике 10 (рис. 77) с 85 до 30°. Для этой цели обычно применяются спиральные или пла­стинчатые теплообменники, отличающиеся высоким коэффици­ентом теплопередачи и небольшими габаритами. При охлажде­нии из нейтрализата выделяются смолообразные вещества, кото­рые оседают на стенках теплообменников и постепенно загряз­няют их. Для чистки теплообменники периодически отключают и промывают 2-4%-ным горячим водным раствором едкого на­тра, который растворяет смолообразные и гуминовые вещества.

Нейтрализованный, очищенный и охлажденный гидролизат.

Сбраживают древесное сусло специальными акклиматизиро­ванными в этой среде спнртообразующими дрожжами. Брожение идет по непрерывному методу в батарее последовательно соеди­ненных бродильных чанов 11 и 12.

Дрожжевая суспензия, содержащая около 80-100 г прессо­ванных дрожжей в литре, подается непрерывным потоком по трубе 15 в дрожжанку 44 и затем в верхнюю часть первого, или головного, бродильного чана 11. В дрожжанку одновременно’ с дрожжевой суспензией подается охлажденное древесное сусло. На каждый кубометр дрожжевой суспензии в бродильный чан поступает 8-10 м3 сусла.

Дрожжинки, содержащиеся в среде гексозных Сахаров, при помощи системы ферментов расщепляют сахара, образуя этило­вый спирт и углекислоту. Этиловый спирт переходит в окружаю­щую жидкость, а углекислый газ выделяется на поверхности дрожжинок в виде маленьких пузырьков, которые постепенно’ увеличиваются в объеме, затем постепенно всплывают на поверх­ность чана, увлекая приставшие к ним дрожжинки.

При соприкосновении с поверхностью пузырьки углекислоты лопаются, а дрожжинки, имеющие удельный вес 1,1, т. е. боль­ший, чем у сусла (1,025), опускаются вниз, пока снова не будут подняты углекислотой на поверхность. Непрерывное движение дрожжинок вверх и вниз способствует перемещению потоков жидкости в бродильном чане, создавая перемешивание или «бро­жение» жидкости. Выделяющаяся на поверхности жидкости углекислота из бродильных чанов по трубе 13 поступает на уста­новку для получения жидкой или твердой углекислоты, исполь­зуется для получения химических продуктов (например, моче­вины) или выпускается в атмосферу.

Частично сброженное древесное сусло вместе с дрожжами передается из головного бродильного чана в хвостовой чан 12, Где брожение и заканчивается. Поскольку концентрация сахарз в хвостовом чане небольшая, брожение в нем идет менее интен­сивно, и часть дрожжей, не успевая образовать пузырьки угле­кислоты, оседает на дно чана. Чтобы не допустить этого, в хвос­товом чане устраивают часто принудительное перемешивание жидкости мешалками или центробежными насосами .

Бродящая или сброженная жидкость называется бражкой. По окончании брожения бражка передается в сепаратор 14, ра­ботающий по принципу центрифуги. Попадающая в него бражка вместе со взвешенными в ней дрожжами начинает вращаться со скоростью 4500-6000 оборотов в минуту. Центробежная сила вследствие разности удельных весов бражки и дрожжей разде­ляет их. Сепаратор делит жидкость на два потока: больший, не содержащий дрожжей, поступает в воронку 16 и меньший, содер­жащий дрожжи, поступает через воронку в трубу 15. Обычно первый поток в 8-10 раз больше, чем второй. По трубе 15 дрож­жевая суспензия возвращается в головной бродильный чан 11 Через дрожжанку 44. Сброшенное и освобожденное от дрожжей сусло собирается в промежуточном сборнике бражки 17.

При помощи сепараторов дрожжи постоянно циркулируют в замкнутой системе бродильной установки. Производительность сепараторов 10-35 м3/час.

Во время брожения и особенно при сепарации часть содержа­щихся в древесном сусле гуминовых коллоидов коагулируется, образуя тяжелые хлопья, медленно оседающие на дно бродиль­ных чанов. В днищах чанов устроены штуцеры, через которые осадок периодически спускается в канализацию.

Как уже указывалось выше, теоретический выход спирта из 100 кг сброженных гексоз составляет 64 л. Однако практически вследствие образования за счет Сахаров побочных продуктов (глицерин, уксусный альдегид, янтарная кислота и т. д.), а также из-за присутствия в сусле вредных для дрожжей примесей выход спирта составляет 54-56 л.

Для получения хороших выходов спирта необходимо все вре­мя дрожжи поддерживать в активном состоянии. Для этого сле­дует тщательно выдерживать заданную температуру брожения, концентрацию водородных ионов, необходимую чистоту сусла и оставлять в бражке перед поступлением ее на сепаратор не­большое количество гексоз, так называемый «недоброд» (обычно не более 0,1 %’ сахара в растворе). Благодаря наличию недоброда дрожжи все время остаются в активной форме.

Периодически гидролизный завод останавливают на планово — предупредительный или капитальный ремонт. В это время дрож­жи следует сохранять в живом виде. Для этого суспензию дрож­жей при помощи сепараторов сгущают и заливают холодным древесным суслом. При низкой температуре брожение резко за­медляется и дрожжи потребляют значительно меньше сахара.

Бродильные чаны емкостью 100-200 м3 обычно изготовляют­ся из листовой стали или, реже, из железобетона. Продолжитель­ность брожения зависит от концентрации дрожжей и составляет от 6 до 10 часов. Необходимо следить за чистотой производствен­ной культуры дрожжей и предохранять ее от инфицирования посторонними вредными микроорганизмами. Для этой цели все оборудование необходимо содержать в чистоте и периодически подвергать стерилизации. Наиболее простым способом стерили­зации является пропарка всего оборудования и особенно трубо­проводов и насосов острым паром.

По окончании брожения и отделения дрожжей спиртовая бражка содержит от 1,2 до 1,6% этилового спирта и около 1% пентозных Сахаров.

Выделяют спирт из бражки, очищают и укрепляют его в трех­колонном брагоректификационном аппарате, состоящем из браж — ной 18, ректификационной 22 и метанольной 28 колонн (рис.77).

Бражка из сборника 17 насосом подается через теплообмен­ник 41 на питающую тарелку бражной колонны 18. Стекая по тарелкам исчерпывающей части бражной колонны вниз, бражка встречает на своем пути поднимающийся вверх пар. Последний, постепенно обогащаясь спиртом, переходит в верхнюю, укрепляю­щую часть колонны. Стекающая вниз бражка постепенно осво­бождается от спирта, а затем из кубовой царги колонны 18 по трубе 21 переходит в теплообменник 41, где нагревает поступаю­щую в колонну бражку до 60-70е. Дальше бражку нагревают до 105° в колонне острым паром, поступающим по трубе 20. Осво­божденная от спирта бражка называется «бардой». По трубе 42 Барда выходит из бардяного теплообменника 41 и направляется в дрожжевой цех для получения из пентоз кормовых дрожжей. Этот процесс в дальнейшем будет подробно рассмотрен.

Бражная колонна в верхней укрепляющей части заканчивает­ся дефлегматором 19, в котором конденсируются пары ьод — носпиртовой смеси, поступающие с верхней тарелки ко­лонны.

В 1 м3 бражки при температуре 30° растворяется около 1 мъ углекислого газа, образовавшегося при брожении. При нагрева­нии бражки в теплообменнике 41 и острым паром в нижней части бражной колонны растворенная углекислота выделяется и вместе с парами спирта поднимается в укрепляющую часть колонны и далее в дефлегматор 19. Неконденсирующиеся газы отделяются через воздушники, установленные на трубопроводах спиртового конденсата после холодильников. Низкокипящие фракции, со­стоящие из спирта, альдегидов и эфиров, проходят через дефлег­матор 19 и окончательно конденсируются в холодильнике 39у Откуда в виде флегмы стекают обратно в колонну через гидро­затвор 40. Неконденсирующиеся газы, состоящие из углекислого газа, перед выходом из холодильника 39 проходят дополнитель­ный конденсатор или промываются в скруббере водой для улав­ливания последних остатков спиртовых паров.

На верхних тарелках бражной колонны в жидкой фазе содер­жится 20-40% спирта.

Конденсат по трубе 25 поступает на питающую тарелку рек­тификационной колонны 22. Эта колонна работает аналогично бражной колонне, но на более высоких концентрациях спирта. В нижнюю часть этой колонны по трубе 24 подается острый пар, который постепенно вываривает спирт из спиртового конденсата, стекающего в низ колонны. Освобожденная от спирта жидкость, называемая лютером, по трубе 23 уходит в канализацию. Содер­жание спирта в барде и лютере составляет не более 0,02%.

Над верхней тарелкой ректификационной колонны устанавли­вается дефлегматор 26. Не сконденсировавшиеся в нем пары окончательно конденсируются в конденсаторе 26а и стекают об­ратно в колонну. Часть низкокипящих фракций отбирается по трубе 43 в виде эфироальдегидной фракции, которая возвращает­ся в бродильные чаны, если она не имеет применения.

Для освобождения этилового спирта от летучих органических кислот в колонну подается из бака 45 10%-ный раствор едкого натра, который нейтрализует кислоты на средних тарелках укре­пляющей части колонны. В средней части ректификационной ко­лонны, где крепость спирта составляет 45-50%, накапливаются сивушные масла, которые отбираются по трубе 46. Сивушные масла представляют собой смесь высших спиртов (бутиловый, пропиловый, амиловый), образовавшихся из аминокислот.

Этиловый спирт, освобожденный от эфиров и альдегидов, а также сивушных масел, отбирается при помощи гребенки с верхних тарелок укрепляющей части ректификационной колон­ны и по трубе 27 поступает на питающую тарелку метанольной колонны 28. Спирт-сырец, поступающий из ректификационной колонны, содержит около 0,7% метилового спирта, который обра­зовался при гидролизе растительного сырья и вместе с моноса­харидами попал в древесное сусло.

При брожении гексоз метиловый спирт не образуется. По техническим условиям на этиловый спирт, вырабатываемый ги­дролизными заводами, в нем должно содержаться не более 0,1% метилового спирта. Исследования показали, что легче всего мети­ловый спирт отделяется из спирта-сырца при минимальном со­держании в нем воды. По этой причине в метанольную колонну подают спирт-сырец с максимальной крепостью (94-96% эта­нола). Выше 96%’ этиловый спирт получить на обычных ректифи­кационных колоннах нельзя, так как этой концентрации отвечает состав нераздельнокипящей водоспиртовой смеси.

В метанольной колонне легкокипящей фракцией является ме­танол, который поднимается в верхнюю часть колонны, укреп­ляется в дефлегматоре 29 и по трубе 30 сливается в сборники метанольной фракции, содержащей около 80% метанола. Для выпуска товарного 100%-ного метанола устанавливается вторая метанольная колонна, не показанная на рис. 77.

Этиловый спирт, стекая по тарелкам, опускается в нижнюю часть метанольной колонны 28 и по трубе 33 сливается в прием­ники готовой продукции . Обогревают метанольную колонну глу­хим паром в выносном подогревателе 31, который установлен таким образом, что по принципу сообщающихся сосудов его меж­трубное пространство залито спиртом. Поступающий в подогре­ватель водяной пар нагревает спирт до кипения и образующиеся спиртовые пары идут на обогрев колонны. Пар, поступающий в подогреватель 31, конденсируется в нем и в виде конден­сата подается в сборники чистой воды или сливается в кана­лизацию.

Количество и крепость полученного этилового спирта измеряют в специальной аппаратуре (фонарь, контрольный сна­ряд, мерник спирта). Из мерника паровым насосом этиловый спирт подают за пределы главного корпуса - в стационарные цистерны, располженные в складе спирта. Из этих цистерн по мере необходимости товарный этиловый спирт переливают в железнодорожные цистерны, в которых отвозят его к местам потребления.

Описанный выше технологический процесс дает возможность получать из 1 т абсолютно сухой хвойной древесины 150-180 л 100%-ного этилового спирта. При этом на 1 дкл спирта расхо­

Абсолютно сухой древесины в кг. . . . . 55-66;

TOC o "1-3" h z серной кислоты - моаоидрата в кг … . 4,5;

Извести негашеной, 85%-ной в кг …………………………………………………. 4,3;

Пара технологического 3- и 16-атмосферного

В мегакалориях. ………………………………………………………………………….. 0,17-0,26;

Воды в м3……………………………………………………………………………………………. 3,6;

Элекгрознер в квт-ч. …………………………………………………………………….. 4,18

Годовая производительность гидролизно-спиртового завода средней мощности по спирту составляет 1 -1,5 млн. дал. На этих заводах основным продуктом является этиловый спирт. Как уже указывалось, одновременно с ним из отходов основного произ­водства на гидролизно-спиртовом заводе вырабатывается твердая или жидкая углекислота, фурфурол, кормовые дрожжи, продукты переработки лигнина. Эти производства будут рассмотрены в дальнейшем.

На некоторых гидролизных заводах, получающих в качестве основного продукта фурфурол или ксилит, после гидролиза бога­тых пентозами гемицеллюлоз остается трудногидролизуемый остаток, состоящий из целлюлозы и лигнина и носящий название целлолигнина.

Целлолигнин может быть гидролизован перколяционным ме­тодом, как описано выше, и полученный гексозный гидролизат, обычно содержащий 2-2,5% Сахаров, может быть переработан по описанной выше методике в технический этиловый спирт или кормовые дрожжи. По этой схеме перерабатывается хлопковая шелуха, кукурузная кочерыжка, дубовая одубина, подсолнечная лузга и т. д. Такой производственный процесс является экономи­чески выгодным только при дешевом сырье и топливе.

На гидролизно-спиртовых заводах обычно получается техни­ческий этиловый спирт, используемый для последующей химиче­ской переработки. Однако в случае необходимости этот спирт
сравнительно легко очищается путем дополнительной ректифи­кации и окисления щелочным раствором перманганата. После та­кой очистки этиловый спирт вполне пригоден для пищевых целей.

На сегодняшний день достаточно много людей занимается изготовлением домашней наливки, однако для некоторых напитков необходимо наличие спиртного элемента. Производство спирта в домашних условиях не является сильно трудоемким. Для этого необходимо знать и учитывать некоторые аспекты и принципы изготовления метилового спирта.

В первую очередь для изготовления метанола требуется наличие зерна. В роли зерновых культур в данном случае могут выступать кукуруза, пшеница. Также можно использовать картофель и крахмал. Но, как известно, во взаимодействии с веществом крахмал не дает никакой реакции. С целью произвести химический элемент используется метод засахарения. А для того, чтобы его засахарить, необходимы определенные ферменты, они присутствуют в солоде. Делая этанол из зерна без химических примесей, наблюдается выход натурального продукта.

Технология производства метанола

Технология по производству спиртового химического вещества в домашних условиях может состоять из нескольких этапов.

Ниже представляются самые основные:

  1. Производство метанола с помощью солода. Зерна культурных растений необходимо проращивать в небольших посудинах, при этом их рассыпают в один слой, примерно до трех сантиметров. Помните, что предварительно пророщенные зерна необходимо обработать раствором марганцовки. После обработки семена помещаются в емкость и смачиваются водой. Следует учитывать, что наличие солнечных лучей, или достаточность света напрямую зависит от скорости прорастания зерна. Поверх емкости следует накрыть полиэтиленовый материал или тонкое стекло, то есть он должен быть достаточно прозрачным. Если наблюдается уменьшение количества воды, ее необходимо добавлять.
  2. Следующий этап: обработка крахмала. Для начала добываем крахмал из продукта, который выбран для изготовления этанола. В данном случае это картофель. Слегка порченый картофель необходимо варить до тех пор, пока из воды начнет образовываться клейстер. Далее ждем, пока продукт остынет, тем временем измельчаем солод. Следом перемешиваем два продукта. Далее происходит процедура расщепления крахмала, ее необходимо производить при температуре не менее 60 ˚ С. Теперь смесь помещается в посуду с горячей водой и оставляется на 1 час. По истечении времени изделие полностью остужают.
  3. Этап брожения. Как известно, брожение характеризуется присутствием в алкоголе содержащих элементов. Однако брагу назвать алкогольным напитком невозможно. После остывания смеси добавляются дрожжи, которые способны вступить в реакцию даже при комнатной температуре. Однако если температура поднимается выше — брожение продукта естественно будет происходить быстрее. При значительной жаре процедура брожения закончится по истечении трех суток. При этом из продукта можно ощущать мягкий запах зерна.
  4. Следующий этап — это перегонка. С помощью чего она производится? Для этого используется специальный аппарат для производства спирта в домашних условиях.
  5. Заключительным этапом считается технология очистки. Можно сказать, что метиловый спирт готов, но замечается, что жидкость не прозрачная. Именно поэтому и делается очистка. Она проводится путем добавления раствора марганцовки. В таком виде оставляем метиловый спирт на одни сутки, затем фильтруем — продукт готов.

Как, видим, технология изготовления домашнего спирта довольно проста и не требует дополнительных усилий.

Производство этанолового вещества из опилок

В последние годы значительно снизилось ископаемое сырье, которое можно использовать для изготовления этилового спирта. Наблюдается нехватка зерна. Однако производство спирта из древесных опилок не самый худший вариант, так как этот сырьевой продукт постоянно обновляется по истечении годов.

Однако изготовление вещества из опилок требует некоторых навыков, и плюс ко всему изготовитель должен иметь специальное оборудование, без которого будет трудоемко изготавливать этанол. Производство спирта из опилок в домашних условиях пользуется высокой популярностью, так не требует высоких затрат.

Как известно, свой изготовленный этанол не сравнивается с заводским вариантом. Продукция, изготовленная в хозяйственных условиях, является более качественной, ведь каждый ингредиент отличается своей уникальностью. Из опилок производить спирт значительно проще!

Как производить спиртной продукт дома?

Производство этилового спирта в домашних условиях ведется при использовании специального аппарата. Данный аппарат способен производить процедуру расщепления определенных элементов, а также проводить химические реакции между ними. Обычное оборудование для изготовления спиртной продукции может выглядеть как мини заводы. Изготавливать в них можно любые виды алкогольных напитков.

Изучить технологию приготовления этилового вещества довольно просто, при этом изделие получается высококачественным. Что из этого можно получить? Во-первых, это продукция алкогольного характера с высоким качеством, а во-вторых полностью происходит окупаемость собственных затрат, для этого требуется специальный аппарат.

Например, если используется сахар в количестве 20 кг, с него выходит до 12 литров алкоголя. При этом процент метанола достигает до 96%. Из этого расчета выходит 25 бутылок водки по пол литра. Кроме того, электричества, которое потребляет аппарат, будет потрачено около 25 квт.

Такое оборудование способно использовать все загруженные продукты по назначению. Выход продукта, непригодного для питья, производимого при первой обработке, можно использовать как очиститель для стеклянных поверхностей и окон. Также такой аппарат можно установить самостоятельно, пользуясь необходимыми схемами и чертежами. Такое оборудование с легкостью справится с производством метилового спирта.

Оборудование по производство спиртных продуктов имеет некоторые принципы своей работы. Аппарат имеет специальную горловину, которая заполняет бак необходимой жидкостью. В виде такой жидкости может выступать брага. При помощи нагревательных горелок продукт нагревается до температуры кипения. После чего аппарат и оборудование необходимо перевести в обычный режим.

Далее происходит охлаждение через холодильное отделение с добавочной очисткой пара от ненужных примесей. Очищенное вещество попадает в бак, а пары в холодильник, в котором охлаждаются до состояния жидкости. Аппарат для производства спирта способен выработать установленный норматив. Результатом проведения данной процедуры выступает алкоголь высококачественного приготовления.

В настоящее время многие люди умеют создавать метанол даже своими руками в домашних условиях. В том числе занимаются приготовлением спирта из опилок. Именно производство спирта из опилок считается самым простым и экономичным из всех других известных на сегодняшний день способов. При этом сложным и трудоемким он кажется лишь на первый взгляд. На самом деле повторить это процесс будет достаточно просто даже новичку. Главное, знать все основные принципы изготовления метилового спирта, а также учитывать некоторые хитрости процедуры, которые раскрывают всем желающим профессионалы. Стандартная технология по производству обсуждаемого химического вещества дома обычно состоит сразу из нескольких основных этапов. Для начала получается солод из зерновых культур, затем из слегка подпорченного картофеля варится клейстер, в результате чего происходит обработка крахмала.

Следующий этап - брожение. На нем к заранее подготовленной смеси уже добавляются дрожжи. Чем выше температура окружающей среды, тем быстрее удастся преодолеть обсуждаемый этап. Но он способен самостоятельно завершиться даже при обычных естественных условиях. Конечно, в том случае, если были выбраны качественные дрожжи. Предпоследний этап называется "перегонка". Его можно назвать самым трудоемким и продолжительным. Для данного этапа всегда требуется специальный аппарат, который, кстати, современные умельцы легко изготавливают своими руками. И, наконец, остается лишь очистка. Эта самый последний этап производства спирта в домашних условиях. Продукт практически готов, вот только ему не достает желаемой прозрачности. Добиться ее удастся при помощи самой обычной марганцовки, с которой жидкость настаивается в течении 24 часов. В завершение останется лишь профильтровать продукт.

Так как в последнее время количество ископаемого сырья, которое подходит для производства спирта в домашних условиях, стало постепенно снижаться, то появилась необходимость найти новые варианты. Как известно, появляется нехватка зерна, поэтому потребовалось отыскать ему достойную альтернативу. И она была быстро найдена - это древесные опилки. Данное сырье на сегодняшний день является максимально доступным для всех желающих. Найти его не составляет никакого труда. И, что не менее важно, древесные опилки стоят недорого. А в некоторых случаях их и вовсе удается найти совершенно бесплатно. Неудивительно, что обсуждаемое сырье пользуется огромной популярностью среди всех, кто занимается производством спирта в домашних условиях. Правда, изготовление данного вещества требует от человека определенных навыков, а также приобретения некоторого дополнительного оборудования.

В первую очередь потребуется заготовить древесные опилки. Например, 1 килограмм исходного продукта. Очень важно, чтобы опилки были тщательно измельчены. Их потребуется хорошенько просушить, прежде чем приступить к производству метанола. Лучше всего отказаться от использования для этой цели духового шкафа и других аналогичных вариантов. Достаточно будет высыпать опилки тонким слоем на чистую газету в темном хорошо проветриваемом помещении и оставить в таком виде на несколько дней. Конечно же, в сырье также не должно быть были, каких-либо примесей и грязи. Специалисты отмечают, что лучше всего для данного процесса подходят именно опилки лиственных пород. А вот сырье от хвойных лучше не использовать.

Через холодильник, в котором будет осуществляться возгонка и электролит, в качестве которого отлично подойдет серная кислота, тщательно просушенные опилки отправляются в удобную колбу или другую аналогичную емкость. Они должны заполнить ее на 2/3 от общего объема. Далее потребуется нагреть массу до 150 градусов. Готовая жидкость обычно имеет легкий голубоватый оттенок. Конечно, не стоит забывать и об использовании качественного катализатора. Например, можно применить оксид алюминия - части корунда. Заливать очередную порцию в используемый сосуд можно сразу после того, как жидкость в нем приобретет черный цвет. Очень важно защитить свои органы дыхания респиратором или специальной маской. Лучше всего также подумать о прочных перчатках. Помещение, в котором изготавливается спирт из опилок, должно быть просторным и тщательно проветриваемый. На кухне этого делать не стоит, так как вокруг находятся продукты.

Готовое вещество может использоваться в качестве топлива и для каких-либо других аналогичных целей. А вот употреблять получившийся спирт внутрь и использовать для дальнейшего приготовления из него алкогольных напитков не рекомендуется. Всего из одного килограмма просушенных опилок можно получить приблизительно пол литра (чуть меньше) готового метанола.

Производство спирта из картофеля, зерна, мелассы, сахарной свеклы требует расхода больших количеств этих ценных видов сырья. Замена такого сырья более дешевым является одним из источников экономии пищевых продуктов и снижения себестоимости спирта. Поэтому в последнее время значительно увеличилось производство технического этилового спирта из непищевого сырья: древесины, сульфитных щелоков и синтетическим путем из этиленсодержащих газов.

Производство спирта из древесины

Гидролизная промышленность выпускает из растительных отходов, содержащих целлюлозу, в частности из древесных отходов, ряд продуктов: этиловый спирт, кормовые дрожжи, глюкозу и др.

На гидролизных заводах целлюлозу гидролизуют минеральными кислотами до глюкозы, которая используется для сбраживания в спирт, выращивания дрожжей и выпуска в кристаллическом виде. Существуют гидролизные заводы различного профиля: гидролизно-спиртовые, гидролизно-дрожжевые, гидролизно-глюкозные. Гидролизная промышленность имеет большое народнохозяйственное значение; оно обусловлено тем, что из малоценных растительных отходов получают ценные продукты. В частности, из 1 т абсолютно сухой хвойной древесины получают 170-200 л этилового спирта, для выработки которого потребовалось бы 0,7 т зерна или 2 т картофеля.

Гидролизная промышленность комплексно перерабатывает древесину, в результате чего на гидролизно-спиртовых заводах получают, кроме этилового спирта, и другие ценные продукты: фурфурол, лигнин, жидкую углекислоту, кормовые дрожжи.

Сырье гидролизного производства

Сырьем гидролизного производства служит древесина в виде различных отходов лесной и деревообрабатывающей промышленности: опилки, щепа, стружка и др. Влажность древесины колеблется от 40 до 60%. Опилки, перерабатываемые гидролизными заводами, обычно имеют влажность 40- 48%. В состав сухих веществ древесины входят целлюлоза, гемицеллюлозы, лигнин и органические кислоты.

Гемицеллюлозы древесины состоят из гексозанов: маннана, галактане и пентозанов: ксилана, арабана и их метилированных производных. Лигнин представляет собой сложное вещество ароматического ряда, химический состав и строение его еще не установлены.

Химический состав абсолютно сухой древесины приведен в таблице 1.

Таблица 1 — Химический состав абсолютно сухой древесины

Кроме древесины, в качестве сырья для гидролизной промышленности применяются и растительные отходы сельского хозяйства: подсолнечная лузга, кукурузная кочерыжка, хлопковая шелуха, солома зерновых злаков.

Химический состав растительных отходов сельского хозяйства представлен в таблице 2.


Таблица 2 — Химический состав растительных отходов сельского хозяйства

Технологическая схема комплексной переработки древесины

Технологическая схема комплексной переработки древесины состоит из следующих стадий: гидролиз древесины, нейтрализация и очистка гидролизата; сбраживание гидролизного сусла, перегонка гидролизной бражки.

Измельченную древесину подвергают гидролизу разбавленной серной кислотой при нагревании под давлением. При гидролизе гемицеллюлозы и целлюлоза разлагаются. Гемицеллюлозы превращаются в гексозы: глюкозу, галактозу, маннозу и пентозы: ксилозу и арабинозу; целлюлоза — в глюкозу. Лигнин при гидролизе остается в виде нерастворимого остатка.

Гидролиз древесины осуществляют в гидролизном аппарате — стальном цилиндрическом сосуде. В результате гидролиза получают гидролизат, содержащий около 2-3% сбраживаемых моносахаридов и нерастворимый остаток-лигнин. Последний можно использовать непосредственно в производстве строительных плит, в кирпичном производстве, при помоле цемента, в качестве топлива; после соответствующей обработки лигнин может применяться в производстве пластмасс, резиновой промышленности и др.

Полученный гидролизат направляют в испаритель, где пар отделяется от жидкости. Выделяющийся пар конденсируют и используют для выделения из него фурфурола, скипидара и метилового спирта. Затем гидролизат охлаждают до 75-80°С, нейтрализуют в нейтрализаторе известковым молоком до pH 4-4,3 и добавляют питательные соли для дрожжей (сернокислый аммоний, суперфосфат). Полученный нейтрализат отстаивают для освобождения от выпавшего осадка сернокислого кальция и других взвешенных частиц. Осевший осадок сернокислого кальция отделяют, сушат, обжигают и получают алебастр, используемый в строительной технике. Нейтрализат охлаждают до 30-32°С и направляют на брожение. Подготовленный таким образом к брожению гидролизат называется суслом. Брожение гидролизного сусла производят непрерывным способом в бродильных чанах. При этом дрожжи непрерывно циркулируют в системе; дрожжи отделяют от бражки на сепараторах. Выделяющийся при брожении углекислый газ используют для выпуска жидкой или твердой углекислоты. Зрелую бражку, содержащую 1,0-1,5% спирта, направляют для перегонки и ректификации на брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Барда, полученная после перегонки, содержит пентозы и ее используют для выращивания кормовых дрожжей.


Рисунок 1 — Технологическая схема комплексной переработки древесины на гидролизно-спиртовых заводах

При переработке по указанной схеме из 1 т абсолютно сухой хвойной древесины можно получить следующие количества товарных продуктов:

  • Спирта этилового, л ………………….. 187
  • Жидкой углекислоты, кг …………….. 70
  • или твердой углекислоты, кг ……… 40
  • Дрожжей кормовых, кг…………….. .. 40
  • Фурфурола, кг …………………………….9,4
  • Скипидара, кг ……………………………0,8
  • Термоизоляционных и строительных лигно-плит, м 2 …. 75
  • Алебастра строительного, кг ……..225
  • Сивушного масла, к г ………………..0,3

Производство спирта из сульфитных щелоков

При производстве целлюлозы из древесины по сульфитному способу в качестве отхода получают сульфитный щелок — коричневую жидкость с запахом сернистого газа. Химический состав сульфитного щелока (%): вода — 90, сухие вещества — 10, в том числе производные лигнина — лигносульфонаты — 6, гексозы — 2, пентозы -1 , летучие кислоты, фурфурол и другие вещества — около 1. Длительное время сульфитные щелока спускали в реки, они загрязняли воду и уничтожали рыбу в водоемах. В настоящее время у нас имеется ряд заводов по комплексной переработке сульфитного щелока на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты. Производство спирта из сульфитных щелоков состоит из следующих стадий: подготовка сульфитного щелока к брожению, сбраживание сульфитнощелокового сусла, перегонка зрелой сульфитной бражки.

Подготовку сульфитного щелока к сбраживанию осуществляют по непрерывной схеме. Щелок продувают воздухом для удаления летучих кислот и фурфурола, задерживающих процесс брожения. Продутый щелок нейтрализуют известковым молоком и затем выдерживают для укрупнения выпавших кристаллов сернокислого и сернистокислого кальция; при этом добавляют питательные соли для дрожжей (сернокислый аммоний и суперфосфат). Затем щелок отстаивают. Осевший осадок- шлам — спускают в канализацию, а осветленный щелок охлаждают до 30-32°С. Подготовленный таким образом щелок называется суслом. Сусло направляют в бродильное отделение и сбраживают так же, как гидролизаты древесины, или применяют метод с подвижной насадкой. Подвижной насадкой называются волокна целлюлозы, остающиеся в щелоке. Метод брожения с подвижной насадкой основан на свойстве некоторых рас дрожжей сорбироваться на поверхности целлюлозных волокон и образовывать хлопья волокнисто-дрожжевой массы, которая в зрелой бражке быстро и полно оседает на дно чана. Брожение проводят в бродильной батарее, которая состоит из головного и хвостового чанов. В бродящем сусле волокна целлюлозы с сорбированными дрожжами находятся в непрерывном движении под влиянием выделяющегося углекислого газа. Отбродившая бражка поступает из головного чана в хвостовой, где заканчивается процесс брожения, и волокна с дрожжами оседают на дно. Осевшую дрожжеволокнистую массу насосом возвращают в головной чан, куда одновременно подают сусло, а зрелую бражку, содержащую 0,5-1% спирта, направляют в брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Полученная после перегонки барда содержит пентозы и служит питательной средой для выращивания кормовых дрожжей, которые затем отделяют, высушивают и выпускают в виде сухих дрожжей. Барду после отделения дрожжей, содержащую лигносульфонаты, упаривают до содержания сухих веществ 50-80%. Полученный продукт называется сульфитно-бардяным концентратом и применяется в производстве пластических масс, строительных материалов, синтетических дубителей для получения кожи, в литейном производстве и дорожном строительстве.

Из сульфитно-бардяных концентратов можно получить ценное ароматическое вещество — ванилин.

Технологическая схема комплексной переработки сульфитных щелоков на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты показана на рисунке 2.

Рисунок 2 — Технологическая схема переработки сульфитных щелоков на спирт

При переработке сульфитных щелоков получают в пересчете на 1т еловой древесины:

  • Спирта этилового, л ……………….. 30-50
  • Спирта метилового, л …………………… 1
  • Жидкой углекислоты, л ………….. 19-25
  • Сухих кормовых дрожжей, кг …. 15
  • Сульфитно-бардяных концентратов влажностью 20%, кг …. 475

Производство спирта синтетическим методом

Сырьем для производства синтетического этилового спирта служат газы нефтеперерабатывающих заводов, которые содержат этилен. Кроме того, можно использовать и другие этиленсодержащие газы: коксовый газ, получаемый при коксовании угля, и попутные нефтяные газы.

В настоящее время синтетический этиловый спирт получают двумя способами: сернокислотной гидратацией и прямой гидратацией этилена.

Сернокислая гидратация этилена

Производство этилового спирта этим способом состоит из следующих процессов: взаимодействия этилена с серной кислотой, при котором образуются этилсерная кислота и диэтилсульфат; гидролиз полученных продуктов с образованием спирта; отделение спирта от серной кислоты и очистка его.

Сырьем для сернокислой гидратации служат газы, содержащие 47-50% вес. этилена, а также газы с меньшим содержанием этилена. Процесс осуществляется по схеме, приведенной ниже.


Рисунок 3 — Технологическая схем а получения синтетического спирта способом сернокислотной гидратации

Этилен взаимодействует с серной кислотой в реакционной колонне, представляющей собой вертикальный цилиндр. Внутри колонны находятся колпачковые тарелки с переливными стаканами. В нижнюю часть колонны компрессором подают этиленосодержащий газ, сверху в колонну подводят для орошения 97-98%-ная серная кислота. Газ, поднимаясь вверх, на каждой тарелке барботирует через слой жидкости. Этилен с серной кислотой взаимодействует по реакциям:

Из реакционной колонны непрерывно вытекает смесь этилсерной кислоты, диэтилсульфата и непрореагировавшей серной кислоты. Эту смесь охлаждают в холодильнике до 50°С и направляют на гидролиз, при котором протекают такие реакции:

Моноэтилсульфат, полученный в результате второй реакции, подвергают дальнейшему разложению с образованием еще одной молекулы спирта.

Прямая гидратация этилена

Технологическая схема производства этилового спирта способом прямой гидратации этилена представлена ниже.


Рисунок 4 — Технологическая схема прямой гидратации этилена при производстве этилового спирта

Сырьем для способа прямой гидратации служит газ с высоким содержанием этилена (94-96%). Этилен сжимают компрессором до 8-9 КПа. Сжатый этилен смешивают с водяным паром в определённых соотношениях. Взаимодействие этилена с водяным паром производят в контактном аппарате — гидрататоре, представляющим собой вертикальную стальную полую цилиндрическую колонну, в которой находится катализатор (фосфорная кислота, нанесенная на алюмосиликат).

Смесь этилена и водяного пара при 280-300°С под давлением около 8,0 КПа подают в гидрататор, в котором поддерживают такие же параметры. При взаимодействии этилена с водяным паром, кроме основной реакции образования этилового спирта, протекают побочные реакции, в результате которых получаются диэтиловый эфир, уксусный альдегид и продукты полимеризации этилена. Продукты синтеза уносят из гидрататора небольшое количество фосфорной кислоты, которая может в дальнейшем оказывать коррозийное действие на аппаратуру и трубопроводы. Чтобы избежать этого, кислоту, содержащуюся в продуктах синтеза, нейтрализуют щелочью. Продукты синтеза после нейтрализации пропускают через солеотделитель, а затем охлаждают в теплообменнике и производят конденсацию водно-спиртовых паров. Получают смесь водно-спиртовой жидкости и непрореагировавшего этилена. Непрореагировавший этилен отделяют от жидкости в сепараторе. Он представляет собой вертикальный цилиндр, в котором установлены перегородки, резко изменяющие скорость и направление газового потока. Этилен из сепаратора отводят во всасывающую линию циркуляционного компрессора и направляют на смешение со свежим этиленом. Водно-спиртовой раствор, вытекающий из сепаратора, содержит 18,5-19% об. спирта. Его концентрируют в отпарной колонне и в виде паров направляют для очистки в ректификационную колонну. Спирт получают крепостью 90,5% об. На заводах синтетического спирта применяется способ прямой гидратации этилена.

Производство синтетического спирта, независимо от способа его получения, значительно более эффективно, чем производство спирта из пищевого сырья. Для получения 1 т этилового спирта из картофеля или зерна необходимо затратить 160-200 чел -дней, из газов нефтепереработки только 10 чел -дней. Себестоимость синтетического спирта примерно в четыре раза меньше себестоимости спирта из пищевого сырья.

gastroguru © 2017