Ti металл. Титан - описание элемента с фото, характеристика его влияния на организм человека, а также потребность в этом химическом элементе

Высокопрочный металл, обладающий многими уникальными свойствами. Изначально его применяли в оборонной и военной промышленности. Развитие различных отраслей наук привело к более широкому использованию титана.

Титан в авиастроении

Кроме высокой прочности титан отличается еще и легкостью. Этот металл широко используют в самолетостроении. Титан и его сплавы, благодаря физико-механическим свойствам, являются незаменимыми конструкционными материалами.

Интересный факт: до 60-ых годов титан в основном использовали для изготовления газовых турбин двигателей самолетов. Позднее металл стал применять при производстве деталей консолей самолетов.

Сегодня титан используют для изготовления обшивки самолета, силовых элементов, деталей двигателей и прочего.

Титан в ракетостроении и космической технике

В условиях открытого космоса любой объект подвержен как очень низким, так и высоким температурам. Кроме того, существует еще радиация и частички, которые двигаются с большой скоростью.

К материалам, способным выдержать все тяжелые условия относятся сталь, платина, вольфрам и титан. По ряду показателей предпочтение отдано последнему металлу.

Титан в судостроении

В судостроении титан и его сплавы используют для обшивки судов, а также при изготовлении деталей трубопроводов и насосов.

Малая плотность титана позволяет повысить маневренность судов и вместе с этим снизить их массу. Высокая коррозионная и эрозионная стойкость металла способствует увеличению срока эксплуатации (детали не ржавеют и не поддаются повреждениям).

Также из титана изготавливают навигационные приборы, поскольку этот металл обладает еще и слабыми магнитными свойствами.

Титан в машиностроении

Титановые сплавы используют при выпуске труб для теплообменной аппаратуры, конденсаторов турбин, внутренних поверхностей дымовых труб.

Благодаря своим высокопрочностным свойствам титан позволяет продлить срок эксплуатации оборудования и экономить на ремонтных работах.

Титан в нефтегазовой промышленности

Трубы из титановых сплавов помогут достичь глубины бурения до 15-20 км. Они высокопрочны и не подвержены таким сильным деформациям, как другие металлы.

Сегодня изделия из титана с успехом используются в разработке глубоководных нефтегазовых месторождений. Из высокопрочного металла изготавливают отводы, трубы, фланцы, переходники, прочее. Плюс огромную роль для качественной эксплуатации играет коррозионная стойкость титана к морской воде.

Титан в автомобилестроении

Снижение массы деталей в автомобилестроении помогает уменьшить расход топлива и тем самым сократить объем выхлопных газов. И здесь на помощь приходит титан и его сплавы. Для автомобилей (особенно гоночных) делают пружины, клапана, болты, передаточные валы и выхлопные системы из титана.

Титан в строительстве

Благодаря своей способности противостоять большинству известных негативных факторов окружающей среды, титан нашел применение и в строительстве. Его используют для наружной обшивки зданий, облицовки колонн, в качестве кровельных материалов, карнизов, софитов, крепежных приспособлений и т.д.

Титан в медицине

И в медицине огромную нишу заняли изделия из титана и его сплавов. Из этого прочного, легкого, гипоаллегренного и долговечного металла производят хирургические инструменты, протезы, зубные импланты, внутрикостные фиксаторы.

Титан в спорте

Благодаря все той же прочности и легкости, титан популярен и при производстве спортивного инвентаря. Из указанного металла производят части для велосипедов, клюшки для гольфа, ледорубы, утварь для туризма и альпинизма, лезвия для коньков, ножи для подводного плаванья, пистолеты (спортивная стрельба и органы правопорядка).

Титан в товарах народного потребления

Из титана изготавливают перьевые и шариковые ручки, ювелирные украшения, часы, посуду и садовую утварь, корпуса для мобильных телефонов, компьютеров, телевизоров.

Интересно: из титана изготавливают колокола. Они имеют красивое и необычное звучание.

Другое применение титана

Кроме прочего широкое применение нашел диоксид титана. Его используют в качестве белого пигмента для производства лакокрасочной продукции. Такой белый порошок обладает высокой укрывистостью, т.е. способен перекрыть любой цвет поверх которого его наносят.

При нанесении диоксида титана на поверхность бумаги она приобретает высокие печатные свойства и гладкость.

Именно обозначение Е171 на упаковках жевательных резинок и конфет свидетельствует о наличии диоксида титана. Кроме того этим соединением окрашивают крабовые палочки, пирожные, лекарства, крема, гели, шампуни, фарш, лапшу, осветляют муку и глазурь.

Титановый лист - рулонный и листовой титан ВТ1-0, ВТ20, ОТ4.

Титан — лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

Смотрите так же:

СТРУКТУРА

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.
Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.
Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

СВОЙСТВА

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.
Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

ЗАПАСЫ И ДОБЫЧА

Основные руды: ильменит (FeTiO 3), рутил (TiO 2), титанит (CaTiSiO 5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49.7-52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

ПРОИСХОЖДЕНИЕ

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л. В ультраосновных породах 300 г/т, в основных - 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.
Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe3O 4 , перовскит CaTiO 3 , титанит CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые.
Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

ПРИМЕНЕНИЕ

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) — Ti

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.06-05
Dana (7-ое издание) 1.1.36.1
Nickel-Strunz (10-ое издание) 1.AB.05

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан - это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза - меди и железа. Ещё один важный показатель - это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента , титановая проволока , титановые трубы , титановые втулки , титановый круг , титановый пруток .

Химические свойства

Чистый титан - это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана - это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана - это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Наиболее значимыми для народного хозяйства были и остаются сплавы и металлы, объединяющие легкость и прочность. Титан относится именно к этой категории материалов и, кроме того, обладает превосходной коррозийной стойкостью.

Титан – переходный металл 4 группы 4 периода. Молекулярная масса его составляет всего 22, что указывает на легкость материала. При этом вещество отличается исключительной прочностью: среди всех конструкционных материалов именно у титана самая высокая удельная прочность. Цвет серебристо-белый.

Что такое титан, расскажет видео ниже:

Понятие и особенности

Титан довольно распространен – по содержанию в земной коре занимает 10 место. Однако выделить действительно чистый металл удалось лишь в 1875 году. До этого вещество либо получали с примесями, либо называли металлическим титаном его соединения. Эта путаница привела к тому, что соединения металла стали использоваться значительно раньше, чем сам металл.

Обусловлено это особенностью материала: самые ничтожные примеси заметно влияют на свойства вещества, порой полностью лишая присущих ему качеств.

Так, самая небольшая доля других металлов лишает титан жаропрочности, что является одним из его ценных качеств. А небольшая добавка неметалла превращает прочный материал в хрупкий и непригодный к применению.

Эта особенность сразу же разделила получаемый металл на 2 группы: технический и чистый.

  • Первый применяют в тех случаях, когда более всего нужна прочность, легкость и коррозийная стойкость, так как последнее качество титан не теряет никогда.
  • Материал большой чистоты используется там, где нужен материал, работающий при очень больших нагрузках и больших температурам, но при этом отличающийся легкостью. Это, конечно, авиа- и ракетостроение.

Вторая особая черта вещества – анизотропность. Некоторые его физические качества изменяются в зависимости от приложения сил, что необходимо учитывать при применении.

При нормальных условиях металл инертен, не корродирует ни в морской воде, ни в морском или городском воздухе. Более того, это самое биологически инертное вещество из известных, благодаря чему в медицине широко применяются титановые протезы и имплантаты.

В то же время при повышении температуры он начинает реагировать с кислородом, азотом и даже водородом, а в жидком виде впитывает газы. Эта неприятная особенность крайне затрудняет и получение самого металла, и изготовление сплавов на его основе.

Последнее возможно только при использовании вакуумной аппаратуры. Сложнейший процесс производства превратил довольно распространенный элемент в весьма дорогостоящий.

Связь с другими металлами

Титан занимает промежуточное положение между двумя другими известнейшими конструкционными материалами – алюминием и железом, вернее говоря, сплавами железа. По многим параметрам металл превосходит «конкурентов»:

  • механическая прочность титана в 2 раза выше, чем у железа, и в 6 раз, чем у алюминия. При этом прочность при снижении температуры возрастает;
  • коррозийная стойкость намного выше, чем у железа и даже алюминия;
  • при нормальной температуре титан инертен. Однако при повышении до 250 С, начинает поглощать водород, что сказывается на свойствах. По химической активности он уступает магнию, но, увы, превосходит железо и алюминий;
  • металл намного слабее проводит электричество: его удельное электросопротивление выше, чем у железа 5 раз, выше, чем у алюминия в 20 раз, и выше, чем у магния в 10 раз;
  • теплопроводность также намного ниже: меньше, чем 1 железа в 3 раза, и меньше, чем у алюминия в 12 раз. Однако это свойство обуславливает очень низкий коэффициент температурного расширения.

Плюсы и минусы

На деле недостатков у титана множество. Но сочетание прочности и легкости настолько востребовано, что ни сложный способ изготовления, ни необходимость исключительной чистоты не останавливают потребителей металла.

К несомненным плюсам вещества относятся:

  • низкая плотность, что означает очень небольшой вес;
  • исключительная механическая прочность как самого металла титан, так и его сплавов. При повышении температуры титановые сплавы превосходят все сплавы алюминия и магния;
  • соотношение прочности и плотности – удельная прочность, достигает 30–35, что почти в 2 раза выше, чем у лучших конструкционных сталей;
  • на воздухе титан подлежит покрытию тонким слоем оксида, который и обеспечивает превосходную коррозийную стойкость.

Недостатков у металла тоже хватает:

  • стойкость к коррозии и инертность относится только к продукции с неактивной поверхностью. Титановая пыль или стружка, например, самовоспламеняются и сгорают с температурой в 400 С;
  • очень сложный способ получения металла титан обеспечивает очень высокую стоимость. Материал намного дороже железа, или ;
  • способность впитывать атмосферные газы при повышении температуры требует применения при плавке и получении сплавов вакуумной аппаратуры, что тоже заметно увеличивает стоимость;
  • титан отличается плохими антифрикционными свойствами – на трение он не работает;
  • металл и его сплавы склонны к водородной коррозии, предотвратить которую сложно;
  • титан плохо поддается обработке резанием. Сварка его тоже затруднена из-за фазового перехода во время нагревания.

Лист титана (фото)

Свойства и характеристики

Сильно зависят от чистоты. Справочные данные описывают, конечно, чистый металл, но характеристики технического титана могут заметно отличаться.

  • Плотность металла уменьшается при нагревании от 4,41 до 4,25 г/куб см. Фазовый переход изменяет плотность лишь на 0,15%.
  • Температура плавления металла – 1668 С. температуру кипения – 3227 С. Титан является тугоплавким веществом.
  • В среднем предел прочности на растяжение составляет 300–450 МПа, однако это показатель можно увеличить до 2000 МПА, прибегнув к закалке и старению, а также введению дополнительных элементов.
  • По шкале НВ твердость составляет 103 и это не предел.
  • Теплоемкость титана невелика – 0,523 кдж/(кг·К).
  • Удельное электросопротивление — 42,1·10 -6 ом·см.
  • Титан является парамагнитом. При снижении температуры его магнитная восприимчивость уменьшается.
  • Металлу в целом свойственны пластичность и ковкость. Однако на эти свойства сильно влияют кислород и азот в сплаве. Оба элемента придают материалу хрупкость.

Вещество устойчиво ко многим кислотам, включая азотную, серную в низкой концентрации и практически все органические за исключением муравьиной. Это качество обеспечивает титану востребованность в химической, нефтехимической, бумажной промышленности и так далее.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

О том, где можно найти и как сделать титан, расскажем ниже.

Данное видео посвящено описанию титана как металла:

Производство и добыча

Титан весьма распространен, так что с рудами, содержащими металл, причем в довольно больших количествах, затруднений не возникает. Исходным сырьем выступает рутил, анатаз и брукит – диоксиды титана в разной модификации, ильменит, пирофанит – соединения с железом, и так далее.

А вот сложна и требует дорогостоящей аппаратуры. Способы получения несколько отличаются, поскольку состав руды различен. Например, схема получения металла из ильменитовых руд выглядит так:

  • получение титанового шлака – породу загружают в электродуговую печь вместе с восстановителем – антрацитом, древесным углем и прогревают до 1650 С. При этом отделяют железо, которое идет на получение чугуна и диоксида титана в шлаке;
  • шлак хлорируют в шахтных или солевых хлораторах. Суть процесса сводится к тому, чтобы перевести твердый диоксид в газообразный тетрахлорид титана;
  • в печах сопротивления в специальных колбах металл восстанавливают натрием или магнием из хлорида. В итоге получают простую массу – титановую губку. Это технический титан вполне пригодный для изготовления химической аппаратуры, например;
  • если же требуется более чистый металл, прибегают к рафинированию – при этом металл реагирует с йодом с тем, чтобы получить газообразный йодид, а последний под действием температуры – 1300–1400 С, и электрического тока, разлагается, высвобождая чистый титан. Электрический ток подается через натянутую в реторте титановую проволоку, на которую и осаждается чистое вещество.

Чтобы получить титан в слитках, титановую губку переплавляют в вакуумной печи, чтобы предотвратить растворение водорода и азота.

Цена титана за 1 кг очень высока: в зависимости от степени чистоты металл стоит от 25 до 40 $ за 1 кг. С другой стороны, корпус кислотоупорного аппарата из нержавеющей стали обойдется в 150 р. и прослужит не более 6 месяцев. Титановый будет стоить около 600 р, но эксплуатируется в течение 10 лет. Много производств титана есть в России.

Области применения

Влияние степени очистки на физико-механические качества заставляет рассматривать именно с этой точки зрения. Так, технический, то есть, не самый чистый металл обладает превосходной коррозийной стойкостью, легкостью и прочностью, что и обуславливает его применение:

  • химическая промышленность – теплообменники, трубы, корпуса, детали насосов, арматура и так далее. Материал незаменим на участках, где требуется стойкость к кислотам и прочность;
  • транспортная промышленность – вещество используется для изготовления средств передвижения от железнодорожных составов до велосипедов. В первом случае, металл обеспечивает меньшую массу составов, что делает тягу более эффективной, в последнем – придает легкость и прочность, не зря ведь титановая велосипедная рама считается лучшей;
  • военно-морское дело – из титана изготавливают теплообменники, выхлопные глушители для подводных лодок, клапан, пропеллеры и так далее;
  • в строительстве широко применяют -титан – прекрасный материал для отделки фасадов и кровель. Вместе с прочностью сплав обеспечивает еще одно важное для архитектуры достоинство – возможность придавать изделиям самую причудливую конфигурацию, способность к формообразованию у сплава неограниченная.

Чистый металл, кроме того, является очень стойким к высоким температурам и сохраняет при этом прочность. Применение очевидно:

  • ракето- и авиастроение – из него изготавливают обшивку. Детали двигателей, элементы крепления, части шасси и так далее;
  • медицина – биологическая инертность и легкость делает титан куда более перспективным материалом при протезировании, вплоть до сердечных клапанов;
  • криогенная техника – титан является одним из немногих веществ, которые при снижении температуры становятся лишь прочнее и не утрачивает пластичности.

Титан – конструкционный материал самой высокой прочности при такой легкости и пластичности. Эти уникальные качества обеспечивают ему все более важную роль в народном хозяйстве.

О том, где взять титан для ножа, расскажет видео ниже:

ОПРЕДЕЛЕНИЕ

Титан - двадцать второй элемент Периодической таблицы. Обозначение - Ti от латинского «titanium». Расположен в четвертом периоде, IVB группе. Относится к металлам. Заряд ядра равен 22.

Титан очень распространен в природе; содержание титана в земной коре составляет 0,6% (масс.), т.е. выше, чем содержание таких широко используемых в технике металлов, как медь, свинец и цинк.

В виде простого вещества титан представляет собой серебристо-белый металл (рис. 1). Относится к легким металлам. Тугоплавок. Плотность - 4,50 г/см 3 . Температуры плавления и кипения равны 1668 o С и 3330 o С, соответственно. Коррозионно-устойчив при на воздухе при обычной температуре, что объясняется наличием на его поверхности защитной пленки состава TiO 2 .

Рис. 1. Титан. Внешний вид.

Атомная и молекулярная масса титана

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии титан существует в виде одноатомных молекул Ti, значения его атомной и молекулярной масс совпадают. Они равны 47,867.

Изотопы титана

Известно, что в природе титан может находиться в виде пяти стабильных изотопов 46 Ti, 47 Ti, 48 Ti, 49 Ti и 50 Ti. Их массовые числа равны 46, 47, 48, 49 и 50 соответственно. Ядро атома изотопа титана 46 Ti содержит двадцать два протона и двадцать четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы титана с массовыми числами от 38-ми до 64-х, среди которых наиболее стабильным является 44 Ti с периодом полураспада равным 60 лет, а также два ядерных изотопа.

Ионы титана

На внешнем энергетическом уровне атома титана имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

В результате химического взаимодействия титан отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ti 0 -2e → Ti 2+ ;

Ti 0 -3e → Ti 3+ ;

Ti 0 -4e → Ti 4+ .

Молекула и атом титана

В свободном состоянии титан существует в виде одноатомных молекул Ti. Приведем некоторые свойства, характеризующие атом и молекулу титана:

Сплавы титана

Главное свойство титана, способствующее его широкому применению в современной технике - высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы жаропрочностью - стойкостью сохранять высокие механические свойства при повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения.

При высоких температурах титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротиттана) в качестве добавки к стали.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Вычислите количество теплоты, выделяющейся при восстановлении хлорида титана (IV) массой 47,5 г магнием. Термохимическое уравнение реакции имеет следующий вид:
Решение Запишем еще раз термохимическое уравнение реакции:

TiCl 4 + 2Mg = Ti + 2MgCl 2 =477 кДж.

Согласно уравнению реакции, в неё вступили 1 моль хлорида титана (IV) и 2 моль магния. Рассчитаем массу хлорида титана (IV) по уравнению, т.е. теоретическую массу (молярная масса - 190 г/моль):

m theor (TiCl 4) = n (TiCl 4) × M (TiCl 4);

m theor (TiCl 4) = 1 × 190 = 190 г.

Составим пропорцию:

m prac (TiCl 4)/ m theor (TiCl 4) = Q prac /Q theor .

Тогда, количество теплоты, выделяющейся при восстановлении хлорида титана (IV) магнием равно:

Q prac = Q theor × m prac (TiCl 4)/ m theor ;

Q prac = 477 × 47,5/ 190 = 119,25 кДж.

Ответ Количество теплоты равно 119,25 кДж.
gastroguru © 2017