Самый крепкий материал на земле. Алмаз больше не самый твёрдый природный материал в мире

Твердые материалы сегодня

Наиболее твёрдым из существующих на сегодняшний день материалов является ультратвёрдый фуллерит (примерно в 1,17-1,52 твёрже алмаза). Однако этот материал доступен только в микроскопических количествах. Самым же твёрдым из распространённых веществ является алмаз. Кроме того, существует информация, что группе американских и китайских ученых удалось доказать, что специально обработанный лонсдейлит на 58% тверже алмаза.

Лонсдейлит представляет собой одну из аллотропных модификаций углерода. Структура его кристаллической решетки напоминает структуру решетки алмаза. За это данный материал получил второе имя - гексагональный алмаз. Отличие заключается в том, что элементарная ячейка лонсдейлита содержит четыре атома, а ячейка алмаза - восемь. Однако, по словам исследователей, маловероятно, что новый материал найдет практическое применение, потому рассматривать его теоретические свойства на данный момент не имеет никакого смысла.

Фуллери́т - это молекулярный кристалл, в узлах решётки которого находятся молекулы фуллерена.

Алма́з - минерал, одна из аллотропных форм углерода.

Твёрдость - свойство материала сопротивляться проникновению в него другого, более твёрдого тела.

ФУЛЛЕРИТ - НОВАЯ ФОРМА УГЛЕРОДА

Новый материал для исследования

И. В. ЗОЛОТУХИН, Воронежский технический университет

ВВЕДЕНИЕ

В 1990 году среди физиков и химиков возник бум исследовательских работ, вызванный сообщением о получении нового вещества - фуллерита , состоящего из молекул углерода - фуллеренов . Структура фуллерита, его свойства, методы получения - все эти вопросы оказались в фокусе внимания исследователей. Открылись богатейшие возможности для создания на основе нового вещества различного рода соединений и структур с необычными физико-химическими свойствами.

Фуллерит является аллотропной модификацией углерода. Поэтому, прежде чем перейти к рассмотрению его структуры, свойств и возможных областей применения, вспомним ближайших "родственников" нового вещества - графит и алмаз.

Одной из кристаллических модификаций углерода является графит . Этот чудесный материал находит широчайшее применение в самых разнообразных сферах человеческой деятельности - от изготовления карандашных грифелей до блоков замедления нейтронов в ядерных реакторах.

Расположение атомов углерода в кристаллической структуре графита весьма необычно. Отдельные атомы, соединяясь между собой, формируют шестиугольные кольца, образующие сетку, похожую на пчелиные соты . Множество таких сеток располагаются друг над другом слоями. Расстояние между атомами, расположенными в вершинах правильных шестиугольников, равно 0,142 нм. Соседние атомы внутри каждого слоя связаны весьма прочными ковалентными связями, поэтому слой атомов, образующих гексагональную сетку, достаточно прочен и стабилен. А вот слои в графите находятся на довольно почтительном расстоянии друг от друга: оно равно 0,335 нм, что более чем в два раза превышает расстояние между углеродными атомами в гексагональной сетке. Большое расстояние между слоями определяет слабость сил, связывающих слои. Такая структура - прочные слои, слабо связанные между собой - определяет специфические свойства графита: низкую твердость и способность легко расслаиваться на мельчайшие чешуйки.

Алмаз уникален

Другой кристаллической модификацией углерода является алмаз - вещество совершенно уникальное . Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Соседние атомы связаны между собой ковалентными связями. Такая структура определяет свойства алмаза - самого твердого вещества, известного на Земле.

Изучение этих двух форм чистого углерода имеет давнюю историю. В разное время выдающиеся химики и материаловеды открыли и другие формы углерода, такие, как аморфный углерод, карбин, белый углерод и т. д. Однако все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза. До последнего времени считалось, что существуют только два способа расположения атомов углерода в пространстве, позволяющих получить кристаллическую форму углерода. Такое положение следует считать весьма удивительным. В самом деле, в настоящее время известно свыше миллиона соединений углерода с другими элементами. Их изучение составляет предмет огромного раздела науки - органической химии. В то же время исследования в области химии чистого углерода начались сравнительно недавно. В последние 10 лет фундаментальные исследования ознаменовались выдающимися успехами в получении принципиально новой третьей формы чистого углерода, о которой пойдет речь ниже.

ФУЛЛЕРЕНЫ - МОЛЕКУЛЯРНАЯ ФОРМА УГЛЕРОДА

Новая форма углерода является новой по существу . В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода. Да какая молекула! Оказывается, молекулы чистого углерода представляют собой замкнутую поверхность, имеющую форму сферы или сфероида. Такие молекулы назвали фуллеренами в честь американского изобретателя и архитектора Ричарда Бакминстера Фуллера, получившего в 1954 году патент на строительные конструкции в виде шестиугольников и пятиугольников, составляющих полусферу или полусфероид, которые можно использовать в качестве крыш больших зданий (цирки, выставочные павильоны и др.).

Большой интерес к молекулярному углероду возник в 1985 году, когда была открыта 60-атомная молекула C60 . Кроме того, были обнаружены молекулы C70 , C76 , C84 и т. д. Все они имеют форму замкнутой поверхности, на которой располагаются атомы углерода.

Структура фуллеренов

Основным элементом структуры фуллеренов является шестиугольник, в вершинах которого расположены атомы углерода. Как мы видели ранее, подобные шестиугольники также характерны для структуры графита. Исходя из этого, логично предположить, что графит должен использоваться как исходное сырье для синтеза фуллеренов. Так и происходит на самом деле. В настоящее время твердо установлено, что наиболее эффективным способом получения фуллеренов является термическое разложение слоистой структуры графита на малые фрагменты, из которых затем происходит формирование C60 и других замкнутых молекул углерода.

Если считать, что молекула C60 составлена только из шестиугольных фрагментов графита, то ее радиус должен быть равен 0,37 нм. На самом же деле точное значение радиуса C60 , установленное рентгеноструктурным анализом, составляет 0,357 нм. Эта величина всего на 2% отличается от рассчитанной. Различие в радиусах связано с тем, что атомы углерода располагаются на сферической поверхности в вершинах 20 правильных шестиугольников, унаследованных от графита, и 12 правильных пятиугольников, возникших в процессе формирования C60 . Можно показать, что из правильных шестиугольников легко выкладывается плоская поверхность, однако ими не может быть выложена поверхность замкнутая: часть шестиугольных колец необходимо разрезать, чтобы из разрезанных частей сформировались пятиугольники. Точно таким же образом шьется футбольный мяч. Его покрышка также состоит (и в этом легко убедиться) из пяти- и шестиугольных лоскутков кожи, образующих сферическую поверхность.

Таким образом, структурные элементы фуллеренов подобны структурным элементам графита. Плоская сетка шестиугольников (в случае графита) свернута и сшита в замкнутую сферу или сфероид. При этом часть шестиугольников преобразуется в пятиугольники.

ПОЛУЧЕНИЕ ФУЛЛЕРЕНОВ И ФУЛЛЕРИТА

Установка для получения фуллеренов путем термического испарения графита. Этот способ был разработан в 1990 году . В качестве сырья используют цилиндрические стержни спектрально чистого графита, имеющие диаметр от 1 до 6 мм. Заточенные концы стержней соединяют, и через них пропускают ток 150 - 200 А. Можно использовать как постоянный, так и переменный ток. При пропускании тока в месте контакта возникает электрическая дуга и начинается испарение графита. Нагрев должен быть умеренным, чтобы от стержней отделялись не отдельные атомы углерода, а целые фрагменты слоев графита, состоящие из углеродных шестиугольников. Испаренный графит осаждается на стенках камеры в виде сажи.

Описанный процесс осуществляется в камере, в которой предварительно создается вакуум порядка 10- 6 Торр. Затем камеру заполняют газом гелием. Считается, что атомы гелия способны эффективно отнимать избыточную энергию у фрагментов графита, покинувших зону электрической дуги. Кроме того, гелий уносит энергию, выделяющуюся при объединении фрагментов в молекулы фуллеренов. Оптимальное давление гелия в камере при испарении графита находится в пределах 50 - 100 Торр. Шестиугольные фрагменты графита, охлажденные в газообразном гелии, служат "кирпичиками" для построения молекул C60 и C70 .

Чтобы выделить чистые фуллерены, осевшую на стенках испарительной камеры сажу растворяют в метилбензоле (толуоле). При этом фуллерены переходят в раствор, а непрореагировавшие фрагменты графита выпадают в осадок. Отделение осадка может быть произведено одним из трех путей: фильтрацией, вращением раствора в центрифуге, экстракцией при помощи прибора Сокслета. В результате получают жидкость цвета красного вина, которая затем помещается в испаритель. Толуол испаряется, а фуллерены выпадают на дно и стенки сосуда в виде черной пудры, масса которой составляет около 10% от массы исходной графитовой сажи. В состав пудры входят молекулы C60 и C70 в соотношении 85: 15. Для разделения этих фуллеренов используется жидкостная колоночная хроматография, требующая большого количества растворителей. Цвет чистого C60 в растворе - красный анилиновый, тогда как цвет раствора C70 - оранжевый.

При выпаривании раствора чистого C60 образуется новое кристаллическое вещество, которое получило название "фуллерит". Впервые твердый фуллерит наблюдали Кречмер и Хуффман в мае 1990 года в одной из лабораторий Института ядерной физики в г. Гейдельберге (Германия). Фуллерит является третьей формой чистого углерода, принципиально отличающейся как от алмаза, так и от графита.

КРИСТАЛЛЫ ФУЛЛЕРИТА

Установлено, что фуллерит имеет высокую степень кристаллического порядка . Молекулы C60 при комнатной температуре конденсируются в структуру с плотной упаковкой, где каждая молекула имеет 12 ближайших соседей. Можно доказать, что существуют две плотноупакованные структуры. В кристаллографии (науке о строении кристаллов) они получили названия гранецентрированной кубической (ГЦК) и гексагональной решеток. В кристаллическом фуллерите молекулы фуллеренов образуют ГЦК-решетку. Поскольку 60-атомная молекула имеет диаметр 0,71 нм, размеры элементарной ячейки ГЦК-решетки весьма внушительны: каждая сторона куба равна 1,42 нм, а расстояние между ближайшими соседями составляет около 1 нм. В кристаллах, состоящих из атомов и имеющих ГЦК-решетку, сторона куба обычно не превышает 0,4 нм, а расстояние между ближайшими соседями - 0,3 нм.

Методом ядерного магнитного резонанса доказано, что молекулы C60 , занимая определенные места в гранецентрированной решетке, при комнатной температуре постоянно вращаются вокруг положения равновесия с частотой 1012 с- 1. Такое вращение является значительной помехой, когда требуется определить положение атомов углерода в самой молекуле C60 . К счастью, по мере понижения температуры вращение молекул замедляется и при очень низкой температуре полностью прекращается.

Интересно отметить, что при понижении температуры до 249 К фуллерит испытывает фазовое превращение первого рода, при котором ГЦК-решетка перестраивается в простую кубическую. При этом объем фуллерита увеличивается на 1%.

СВОЙСТВА ФУЛЛЕРЕНОВ И ФУЛЛЕРИТА

Логично предположить, что вещество, состоящее из столь удивительных молекул, будет обладать необычными свойствами. Кристалл фуллерита имеет плотность 1,7 г/см3, что значительно меньше плотности графита (2,3 г/см3) и тем более алмаза (3,5 г/см3). Да это и понятно - ведь молекулы фуллеренов полые.

Фуллерит не отличается высокой химической активностью . Молекула C60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1200 К. Однако в присутствии кислорода уже при 500 К наблюдается значительное окисление с образованием CO и CO2 . Процесс, продолжающийся несколько часов, приводит к разрушению ГЦК-решетки фуллерита и образованию неупорядоченной структуры, в которой на исходную молекулу C60 приходится 12 атомов кислорода. При этом фуллерены полностью теряют свою форму. При комнатной температуре окисление происходит только при облучении фотонами с энергией 0,5 - 5 эВ. Вспомнив, что энергия фотонов видимого света находится в диапазоне 1,5 - 4 эВ, приходим к выводу: чистый фуллерит необходимо хранить в темноте.

Фуллериты достаточно легко растворяются в неполярных растворителях. Наиболее известные растворители образуют следующий ряд в порядке уменьшения растворимости фуллеритов: сероуглерод (CS2), толуол (C7H8), бензол (C6H6), тетрахлорметан (CCl4), декан (C10H22), гексан (C6H14), пентан (C5H12) .

Проводимость и сверхпроводимость фуллеренов

Твердый фуллерит является полупроводником с шириной запрещенной зоны 1,5 эВ. Это означает, что при облучении обычным видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Оказывается, фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси с другими веществами. Одна из первых успешных попыток в этом направлении состоит в следующем: полимер поливинилкарбазол в количестве 1,5 и 0,04 г фуллерита растворяли в 12 мл толуола. Приготовленным раствором покрывалась алюминиевая пластина. Толщина слоев изменялась от 1 до 30 мкм. Как оказалось, спектр фотопоглощения полученной смеси полностью охватывает видимый диапазон (длины волн от 280 до 680 нм). При этом квантовый выход по отношению к образованию электронно-дырочных пар составляет 0,9. Иначе говоря, каждый падающий фотон (квант света) рождает в полученном материале в среднем 0,9 электрона. С этой точки зрения рассматриваемый материал является лучшим в ряду органических фотопроводящих материалов.

Очень интересные результаты были получены при добавлении калия или натрия в кристаллические пленки C60 . Оказалось, что добавка щелочного металла приводит к повышению электрической проводимости таких пленок на несколько порядков. При этом состоянию с металлической проводимостью отвечает структура M3C60 , где M - атом щелочного металла.

В начале 1991 года было установлено, что добавление атомов калия в пленки C60 приводит к тому, что они становятся сверхпроводящими при 19 К, т.е. электрическое сопротивление таких пленок становится равным нулю. Структура RbCs2C60 становится сверхпроводящей уже при 33 К, а сплав RbTlC60 - при 42,5 К. Вероятно, в ближайшем будущем могут быть достигнуты температуры порядка 100 К.

Соединения фуллеренов с другими элементами

В настоящее время установлено, что фуллерены могут являться основой для создания с другими элементами очень многих соединений. Одна из наиболее интересных и заманчивых проблем в этом направлении - внедрение внутрь молекулы C60 атомов различных элементов . В настоящее время известно, что более трети элементов периодической таблицы могут быть помещены внутрь молекулы C60 . Уже имеются сообщения о внедрении атомов лантана, никеля, натрия, калия, рубидия, цезия. С этой точки зрения очень привлекательны атомы редкоземельных элементов, таких как тербий, гадолиний и диспрозий, обладающих ярко выраженными магнитными свойствами. Фуллерен, внутри которого расположен такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем.

Возникает перспектива использования фуллеренов в качестве основы для создания запоминающей среды со сверхвысокой плотностью информации. Как известно, в настоящее время в качестве накопителей информации широко используются магнитные диски. При этом информационная среда представляет собой тонкую пленку ферромагнитного металла, что дает возможность получить поверхностную плотность записи порядка 107 бит/см2. Оптические диски, действие которых опирается на лазерную технологию, позволяют достичь несколько большей информационной плотности, порядка 108 бит/см2. Если же в качестве носителей информации использовать фуллереновые магнитные диполи, расположенные на поверхности жесткого диска на расстоянии 5 нм друг от друга, то плотность записи достигнет фантастического значения 4 " 1012 бит/см2. Реализация подобных устройств даст человечеству невиданное информационное могущество. Например, станет возможным записать содержание всех книг, изданных в мире с момента появления книгопечатания, всего на одну дискету современного формата.

Очень интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов . При этом фуллерен C60 служил основой полимерной цепи, а связь между молекулами осуществлялась с помощью бензольных колец. Такая структура получила образное название "нить жемчуга". Так были синтезированы металлоорганические полимеры типа (C60Pd)n , (C60Pd2)n .

Фуллерит, как исходный материал для получения алмаза

Совсем недавно было показано, что поликристаллический фуллерит можно превратить в алмаз при давлении всего лишь 2 " 105 атм и при комнатной температуре. Пока же, как известно, для превращения поликристаллического графита в алмаз необходимо давление (3 - 5) " 106 атм и температура 1200╟С. Таким образом, фуллериты являются наиболее перспективным сырьем для синтеза самого твердого и дорогого материала - алмаза.

ИСПОЛЬЗОВАНИЕ ФУЛЛЕРЕНОВ

В мае 1994 года на Всемирной конференции в Сан-Франциско широко обсуждались вопросы практического использования фуллеренов в электронике. Крупнейшая международная промышленная корпорация "Мицубиси" решила использовать фуллерены в качестве основы для производства аккумуляторных батарей, принцип действия которых основан на реакции присоединения водорода, подобно тому как это происходит в широко распространенных металлогидридных никелевых аккумуляторах. Отличие заключается в том, что аккумуляторы на основе фуллеренов способны запасать примерно в пять раз большее количество водорода и, следовательно, емкость их в пять раз больше. Кроме того, батареи на фуллеренах характеризуются малым весом, а также высокой экологической и санитарной безопасностью. Планируется широкое использование таких аккумуляторов для питания персональных компьютеров и слуховых аппаратов.

Обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, алмазных и алмазоподобных пленок, лекарственных препаратов, сверхпроводящих материалов, а также в качестве красителей для копировальных машин.

Много внимания уделяется проблеме использования фуллеренов в медицине и фармакологии. Одна из трудностей - создание водорастворимых нетоксичных соединений фуллеренов, которые могли бы вводиться в организм человека и доставляться кровью в орган, подлежащий терапевтическому воздействию. В решении этой проблемы уже имеются успехи. Одно из первых соединений такого рода синтезировано на основе дифенэтиламиносакцинита и активно используется в медико-биологических экспериментах с фуллеренами. Широко обсуждается идея создания противораковых медицинских препаратов на основе водорастворимых эндоэдральных соединений фуллеренов с радиоактивными изотопами (эндоэдральные соединения - это молекулы фуллеренов, внутри которых помещен один или более атомов какого-либо элемента).

Себестоимость фуллерена

ЗАКЛЮЧЕНИЕ

В начале 1995 года 1 грамм фуллерита стоил около 100 долларов США. Столь высокая стоимость обусловлена тем, что имеющиеся способы получения и очистки фуллеренов весьма несовершенны и малопроизводительны (около 1 грамма в час). Поэтому актуальнейшей задачей является разработка новых эффективных методов их получения. Впрочем, не исключено, что дешевле всего получать фуллерены в готовом виде из земных недр. Не так давно стало известно, что природный углеродсодержащий минерал шунгит, запасы которого в Карелии составляют сотни миллионов тонн, содержит 0,1% фуллеренов. Таким образом, из каждой тонны минерала можно получить до килограмма фуллерита, поэтому на очереди - разработка промышленного метода извлечения фуллеренов из шунгита.

Необходимо дальнейшее развитие работ, связанных с получением эндоэдральных молекул C60 . В результате могут быть получены фуллериты с особыми, практически ценными, физико-химическими свойствами. Приоритетными являются исследования биологически активных соединений фуллеренов. Одна из важнейших задач - выяснение закономерностей накопления фуллереновых соединений в органах и тканях. Решение этой проблемы может привести к синтезу новых высокоэффективных лекарственных препаратов.

Таким образом, фуллерены, открытые в результате чисто физических исследований, в настоящее время привлекают внимание не только физиков, но и химиков, энергетиков, материаловедов, медиков и биологов. Не исключено, что исследования в этой области приведут к качественно новым результатам глобального масштаба, так же как это было в начале пятидесятых годов, когда началось широкое использование полупроводников, ставших основой развития информационных технологий.

ЛИТЕРАТУРА

1. Жариков О.В. // Природа. 1992. ╧ 3. С. 68.

2. Smalley R.E. // Nav. Res. Rev. 1991. V. 43. P. 3.

3. Huffman D.R. // Physics Today. 1991. ╧ 11. P. 26.

* * *

Иван Васильевич Золотухин - доктор технических наук, профессор Воронежского технического университета. Область научных интересов - физика неупорядоченных конденсированных сред. Основные исследования связаны с решением физико-химических проблем создания новых аморфных металлических материалов с необычными физическими свойствами. И.В. Золотухин - автор двух монографий и более 230 статей. В последние годы научные усилия направлены на разработку методов получения и изучения физических свойств нанокристаллических сплавов, фрактальных структур и фуллеренов.

АЛМАЗ - МОДИФИКАЦИЯ УГЛЕРОДА

Алмаз - абсолютно незаменимый материал в самых разных областях человеческой деятельности, начиная от ювелирной и обрабатывающей промышленности и заканчивая электронной и космической. И все это - благодаря его уникальным свойствам: твердости и износостойкости, большой теплопроводности и оптической прозрачности, высокому показателю преломления и сильной дисперсии, химической и радиационной стойкости, а также возможности его легирования электрически и оптически активными примесями. Крупные и особо чистые природные алмазы - большая редкость, поэтому неудивительно, что успешные попытки их производства вызывают огромный интерес.

Высокая цена на эти камни объясняется не только их особыми характеристиками, но и уровнем монополизации в торговле: Международная корпорация «Де Бирс», контролирующая 70-80% поставляемых на рынок природных алмазов, уже более столетия удерживает на них известные цены. Освоение во второй половине XX века промышленного производства технических и ювелирных аналогов, казалось бы, должно было снизить стоимость самых твердых и красивых камней на Земле, однако этого не случилось. Стоит сразу уточнить, что тоннами сегодня выращивают только мелкие камни диаметром до 0,6 мм, используемые в качестве сырья для изготовления абразивного инструмента. И цены на них действительно несколько упали после освоения данной технологии и составляют около 10 центов за карат. Однако никакого обвала цен на ювелирные алмазы пока не предвидится, поскольку их выращивание обходится довольно дорого.

Вместе с тем природные алмазы не могут полностью удовлетворить потребности науки, техники и промышленности. Скажем, инструментальной, металло- и камнеобрабатывающей отраслям нужно примерно в 4 раза больше алмазов, чем их добывается из земли. А в ряде высокотехнологичных областей - при изготовлении оптических окон, элементов пассивной и активной электроники, датчиков ультрафиолетового и ионизирующего излучения природное сырье зачастую использовать нельзя.

В первую очередь это связано с тем, что разброс физических свойств природных кристаллов алмаза очень широк - и это во многом исключает возможность их применения в серийных изделиях и приборах, чувствительных к свойствам используемого материала. Другой проблемой является то, что подавляющее большинство природных кристаллов алмаза (примерно 98%) содержит в качестве примеси азот (1 атом азота на 1 000- 100 000 атомов углерода), наличие которого сказывается на свойствах алмаза. Еще одна незадача возникает из-за несовершенства кристаллической структуры добываемых кристаллов и неравномерного распределения примесей.
Всего лишь углерод

Алмаз и алхимия

С давних пор алмаз считали чудодейственным камнем и могущественным талисманом. Полагали, что человек, носящий его, сохраняет память и веселое расположение духа, не знает болезней желудка, на него не действует яд, он храбр и верен.
Трудно представить, что самый твердый из известных природных материалов является одной из полиморфных (отличающихся расположением атомов в кристаллической решетке) модификаций углерода, другая модификация которого - графит, мягкое вещество, использующееся в качестве смазки и грифелей для карандашей.

В алмазе, имеющем кубическую структуру, каждый атом углерода окружен четырьмя такими же атомами, которые образуют правильную четырехгранную пирамиду. Графит же имеет слоистую структуру, в которой прочные связи между атомами углерода существуют только внутри слоя, где атомы образуют гексагональную сетку. Связь же между отдельными слоями очень слабая, поэтому они могут легко скользить относительно друг друга и остаются на бумаге в виде микрочешуек, когда мы пишем карандашом.
Физика роста

Люди всегда хотели сделать алмаз более доступным: то есть не добывать его в копях, а получать лабораторным способом, причем желательно - дешевым.

Опыты над алмазами

Первые документально зафиксированные опыты над алмазами относятся к 1694 году. Именно тогда флорентийские ученые Аверани и Тарджиони продемонстрировали с помощью зажигательного стекла, что алмаз горит, если его нагреть до достаточно высокой температуры. На протяжении последующих веков велись непрерывные эксперименты по исследованию самого прочного в мире минерала (И. Ньютон, А. Лавуазье, С. Теннант, Х. Дэви, М. Фарадей, Г. Розе), после которых стало ясно, что «величайшая драгоценность» в химическом отношении полностью аналогична графиту, углю и саже. Экспериментаторы, разумеется, пытались получить эту «драгоценность» из указанных веществ (В. Каразин, Б. Хэнней, К. Хрущов, А. Муассан). Однако по причине почти полного отсутствия информации о физико-химических свойствах алмаза и графита и несовершенства техники того времени цель так и не была достигнута.

Лишь в 1939 году молодой сотрудник Института химической физики АН СССР Овсей Лейпунский выполнил расчет линии равновесия графит-алмаз. Эта работа впервые обозначила возможные способы промышленного получения камня. Лейпунский рассчитал оценочные значения давления и температуры, необходимые для осуществления превращения графита в алмаз. Впоследствии его расчеты были несколько уточнены и подтверждены экспериментально.

Следующим этапом на пути к решению проблемы получения алмаза явилась разработка аппаратуры, обеспечивающей создание и поддержание в течение длительного интервала времени необходимых высоких давлений и температур. Большой вклад в развитие техники высоких давлений был внесен Нобелевским лауреатом Перси Бриджменом, разработавшим принципы действия аппаратов высокого давления.

Оценка качества алмазов

Бриллианты (ограненные алмазы) оцениваются по четырем главным CCCC критериям (так называемая система 4"C): цвет (color), качество (clarity), огранка и пропорции (cut), вес в каратах (carat weight). Наиболее ценны те, что имеют так называемый «высокий» цвет, а в действительности являются бесцветными.
Наличие даже едва заметного и незначительного, на взгляд неспециалиста, оттенка желтого, коричневого или зеленого цвета (называемого ювелирами «нацветом») может серьезно понизить стоимость камня. У бесцветных алмазов выше всего ценится круглая огранка (бриллиант в этом случае имеет 57 граней), позволяющая максимально выявить блеск и игру камня (так называемый «огонь»). Максимальная стоимость бриллианта весом 1 карат сегодня составляет $18 000.

Наиболее часто камни такого же веса имеют менее высокий цвет и качество, и их стоимость - $5 000- $8 000. Чемпионами по стоимости в мире бриллиантов являются окрашенные в красный, голубой, розовый, зеленый и оранжевый цвета камни. Цена на розовые и голубые может превосходить стоимость бесцветных аналогичного веса и качества в 10 и более раз, а самым дорогим (за карат) за всю историю бриллиантом является камень красного цвета весом 0,95 карата, проданный в 1987 году на аукционе Christie"s за 880 000 долларов США. Единого прейскуранта цен для цветных камней не существует, и, как правило, они формируются на аукционных торгах.

Многолетние усилия ученых и конструкторов завершились в 1953- 1954 годах успешными опытами по выращиванию алмаза. Успеха добились исследовательские группы компаний ASEA (Швеция) и General Electric (США). Полученные образцы были очень далеки от совершенства и имели размер менее 1 мм.

Шведы и американцы использовали схожие технологии - графит в смеси с металлом (растворителем углерода) помещался в твердую сжимаемую среду. Необходимое давление (70 000-80 000 атмосфер) создавалось мощным гидравлическим оборудованием. Нагрев осуществлялся до температур 1 600-2 500°С в течение двух минут.

Кристаллизация алмазов происходила за счет того, что расплав металла (железо) при высоком давлении и температуре оказывается ненасыщенным углеродом по отношению к графиту и пересыщенным по отношению к алмазу. При таких условиях термодинамически выгоднее оказывается образование алмаза и растворение графита. Получаемое в настоящее время по данной технологии сырье - это преимущественно алмазные порошки с размером зерна 0,001-0,6 мм (максимально 2 мм) и концентрацией азота более 1019 атомов/см3.

Способы получения алмазов

В начале 60-х годов советские ученые Б. Дерягин и Б. Спицын и независимо от них американец В. Эверсол предложили принципиально иной CVD-способ получения алмаза, не требующий использования больших давлений. Суть его состоит в том, что углеродсодержащий газ (например, метан) в смеси с водородом и кислородом разлагают при атмосферном или пониженном давлении, и атомы углерода осаждаются на поверхности затравочных кристаллов алмаза, что приводит к их росту. Однако получаемые кристаллы имели ограничения по качеству.

Несмотря на определенные успехи в деле выращивания алмазов, оставалась одна нерешенная задача - получение крупных монокристаллов ювелирного качества. Лишь в 1967 году Роберт Венторф запатентовал способ («метод температурного градиента»), позволивший решить данную проблему.

Движущей силой кристаллизации алмаза в этом методе является перепад концентрации растворенного в металле углерода, обусловленный разностью температур в реакционном объеме. Источник углерода располагают в наиболее горячей зоне, а алмазную затравку (кристалл алмаза размером около 0,5 мм) в области с более низкой температурой. Металлрастворитель плавится и насыщается углеродом. Однако степень насыщения из-за разницы температур будет неравномерной. Равновесная концентрация углерода в расплаве на границе раздела расплав - источник углерода будет выше, чем на границе раздела расплав - алмазная затравка.

Возникающий градиент концентрации приводит к диффузии углерода от источника к затравочным кристаллам, у которых расплав оказывается перенасыщенным - из него происходит осаждение углерода, вызывающее рост алмазного кристалла-затравки. Это очень остроумный метод, основанный на хорошем понимании того множества процессов, которые происходят в термодинамически неравновесных средах, - в данном случае перепад температур одновременно обеспечивает доставку нужного для роста алмаза углерода и гарантирует его осаждение на затравку.
Пирамиды-иголочки из полупроводникового алмаза стоят больше, чем бриллианты такого же размера (0,01 карата)

Обработка алмазов

При огранке и полировке алмазов используют абразивные порошки из того же самого алмаза. Одинаковая твердость абразива и обрабатываемого материала создает определенные проблемы при таких работах. У алмаза, как и у большинства кристаллов, разные грани имеют неодинаковую твердость. Труднее всего поцарапать так называемую грань (111), на которой атомы углерода расположены наиболее плотно.
Именно при обработке поверхностей, параллельных данной кристаллографической грани, у ювелиров и технологов возникают особые трудности. Технологи ищут пути повышения твердости выращиваемых алмазов путем целенаправленного их легирования различными примесями, а также пытаются синтезировать вещества покрепче самого минерала. Уже более 10 лет в научных кругах обсуждаются углеродные материалы, получаемые при высоких давлениях и температурах из молекул фуллерена С60.
Плоскопараллельные пластинки из особо чистого и легированного бором алмаза (2,5х2,5х0,5 мм) Среди синтезируемых кристаллических и аморфных структур особо интересна модификация фуллерита с большой долей «алмазоподобных» межатомных связей - до 80%. Остальная часть химических связей в этом веществе более прочная, чем алмазная, и подобна той, что соединяет атомы в плоскостях графита, в молекуле С60 и стенках углеродных нанотрубок. Структура расположения атомов углерода в этом состоянии обеспечивает изотропность его механических свойств и отсутствие так называемых «легких» плоскостей скалывания, имеющихся у кристаллов алмаза. Как полагают, именно такая «рваная» и сильно напряженная кристаллическая структура и обеспечивает данному материалу твердость выше, чем у знаменитой грани (111) алмаза.
Этот материал, названный «тиснумит», уже нашел применение в сверхпрочных наконечниках зондовых сканирующих микроскопов NanoSkan («Вокруг света» № 6, 2005). Недавно ученые из Германии открыли новый вариант алмазоподобной структуры: агрегированные алмазные наностержни (Aggregated Carbon NanoRods), с плотностью и твердостью на несколько процентов большими, чем у обычного кристаллического алмаза. Ожидается, что такой материал ACNR найдет применение в различных нанотехнологиях.

Блеск алмаза

Первоначально людей в алмазе привлекала только его необычайная твердость, и ценился он ниже некоторых других минералов. Лишь в середине XV века придворный ювелир герцога Бургундии Карла Смелого знаменитый Луи ван Беркем придумал первый вариант так называемой бриллиантовой огранки, позволившей достаточно полно выявить блеск и игру цветов алмаза. Яркий блеск ограненного алмаза обусловлен его высоким показателем преломления (2,42), а разноцветная игра - сильной дисперсией (с

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз - крепчайший минерал, но он далеко не самый крепкий. Твёрдость - не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие - способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 - самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.


Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.


Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.


Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.


Вольфрамовое сверло

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.


Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.


Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).


Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!


Трубка сплава

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.


Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.


Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.


Раковина блюдца

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.


Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.


Кристалл осмия

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).


Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар - это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.


Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.


Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!


Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена ​​из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.


в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.


Модель нанотрубок

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.


Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.


Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.


место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.


Метеориты - главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Твердость алмаза можно определить с помощью нескольких известных ранее шкал. Твердость минералов – такой показатель, измерения которого лучше избегать, если такая возможность существует. Чтобы проверить твердость, нужно царапать минерал различными материалами. Фридрих Моос – известный ученый-минералог – в 1811 году предложил использовать для определения твердости камней специальную шкалу, придуманную им. Впоследствии ее назвали шкалой Мооса.

Что же такое твердость? Простыми словами, это сопротивление, которое оказывает минерал, когда его пытаются поцарапать другим минералом или материалом. Фридрих Моос разработал шкалу с коэффициентом твердости от 1 до 10, где 1 – это тальк, а 10 – алмаз. Ученый взял в свою эталонную шкалу легкодоступные минералы и построил их в линейку по возрастанию сопротивления другим минералам. Числа твердости, указанные Моосом, не определяют истинную твердость минерала.

Алмаз – самый твердый в мире минерал естественного происхождения, по шкале Мооса его показатель равняется 10. Корунд имеет показатель, равный 9. Ученый удалось синтезировать карборунд, который превосходит по твердости корунд, но алмаз он все равно не царапает. Сталь по твердости намного уступает алмазу, ее твердость находится в диапазоне от 5,5 до 7,5 в зависимости от сплава. Тверже алмаза сплав стали сделать не удалось. Но твердость стали определяется с помощью алмазных пластин: насколько пластинка или пирамидка вдавится в образец стали, такая и будет твердость. Сейчас все чаще на производстве алмазы заменяются стальными шариками специальных сплавов.

Прочность алмаза, или почему алмаз такой твердый

Очень давно, когда на Земле еще не было жизни, а сама планета была молодой, на поверхности происходили природные процессы. Тектоническая порода находилась в расплавленном состоянии, она перемешивалась под действием высоких температур и паров различных испарений, а потом медленно остывала. Все эти процессы привели к формированию самого твердого камня, который сейчас называется алмазом.

Происхождение названия данного камня уходит своими корнями в глубокую древность, почему его стали называть именно алмазом, до конца остается неизвестным, но существует ряд предположений:

  1. Слово алмаз пришло из Греции. “Адамас” – “твердый”, “несокрушимый”.
  2. “Ал-ма” от персидского “твердый”.
  3. Название камня происходит от женского имени Элиза или Элайза. Полная форма этого имени Елизавета, означает «Божья милость». По легенде была девушка, которая обладала даром исцеления людей. Имя ее было Элиза. Она была крепка душой и телом, могла своим умением поднять на ноги даже самого тяжелобольного человека. Однажды Элиза влюбилась в прекрасного юношу, он ответил на ее чувства, их любовь была прекрасна, но длилась недолго. Элиза отправилась в дальний путь, чтобы пополнить запасы целебных трав. В это время ее возлюбленный тяжело заболел. Когда Элиза вернулась, он был уже мертв. Девушка жила в горах, она зашла в одну из пещер горной местности и горько заплакала. Это были самые первые ее слезы, они обратились в камни, которые потом стали называть алмазами.

Твердость алмаза и графита

Интересным фактом является то, что алмаз – самый крепкий минерал, а графиту по шкале Мооса соответствует число 1, что означает, что он самый мягкий.

Алмаз и графит состоят из одинаковых атомов одного и того же химического элемента – углерода. Тогда почему одно вещество самое мягкое, а другое – самое твердое? Ответ очень прост. Все дело в химических связях или кристаллических решетках этих минералов. Атомы углерода по-разному связаны между собой, поэтому они проявляют разные химические и физические свойства: имеют различный внешний вид, твердость, пластичность, блеск и другие параметры. Графит имеет слоистую структуру. Атомы углерода между собой связаны слабо, это и объясняет то, что графит очень мягкий.

Лонсдейлит – синтетический алмаз

В природе нет материала тверже алмаза, но наука не стоит на месте. Ученым удалось синтезировать вещество, которое является на 58% прочнее алмаза. Название этого материала – лонсдейлит. Он может выдержать давление на 55 ГПа больше, чем самый твердый природный минерал. Но его использование почти невозможно, потому что его очень трудно получать. Стоимость получения не оправдывает затраченных средств, а в его применении нет особой необходимости. Назван лонсдейлит в честь кристаллографа Кетлин Лонсдейл, которая была родом из Британии.

Прочные материалы имеют широкий спектр использования. Есть не только самый твёрдый металл, но и самая твердая и прочная древесина, а так же самые прочные искусственно созданные материалы.

Где используют самые прочные материалы?

Сверхпрочные материалы применяют во многих сферах жизни. Так, химики Ирландии и Америки разработали технологию, посредством которой производится прочное текстильное волокно. Нить этого материала в диаметре – пятьдесят микрометров. Она создана из десятков миллионов нанотрубок, которые с помощью полимера скреплены между собой.

Прочность этого электропроводящего волокна на разрыв выше прочности паутины паука-кругопряда в три раза. Полученный материал используется для изготовления сверхлегких бронежилетов и спортивного инвентаря. Название еще одного прочного материала – ONNEX, созданного по заказу Министерства обороны США. Кроме применения его при производстве бронежилетов, новый материал можно так же использовать в системах летного контроля, сенсорах, двигателях.


Существует разработанная учеными технология, благодаря которой прочные, твердые, прозрачные и легкие материалы получают посредством преобразования аэрогелей. На их основе можно производить облегченные бронежилеты, броню для танков и прочные строительные материалы.

Новосибирские ученые изобрели плазменный реактор нового принципа, благодаря которому можно производить нанотубулен – сверхпрочный искусственный материал. Этот материал открыли еще двадцать лет назад. Он представляет собой массу эластичной консистенции. Она состоит из сплетений, которые невозможно увидеть невооруженным глазом. Толщина стенок данных сплетений – один атом.


То что атомы как бы вложены друг в друга по принципу «русской матрешки», делает нанотубулен наиболее прочным материалом из всех известных. При добавлении этого материала в бетон, металл, пластик, значительно усиливаются их прочность и электропроводность. Нанотубулен поможет сделать машины и самолеты более прочными. Если же новый материал придет в широкое производство, то очень прочными могут стать дороги, дома, техника. Разрушить их будет очень сложно. Нанотубулен до сих пор не был внедрен в широкое производство из-за очень высокой себестоимости. Однако новосибирским ученым удалось значительно снизить себестоимость этого материала. Теперь нанотубулен можно производить не килограммами, а тоннами.


Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2. Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.


Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.


Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.


Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом..

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.


В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.
Подпишитесь на наш канал в Яндекс.Дзен

Алмаз до сих пор остается эталоном твёрдости и используется в различных методиках измерения механической твёрдости материалов (методы Роквелла, Виккерса, Мооса). Но существуют материалы, не только сравнимые по твердости с алмазом, но и превосходящие его по этой характеристике.

В статье для сравнения материалов приведена их микротвёрдость по Виккерсу. Сверхтвёрдыми считаются материалы, твёрдость которых превышает 40 ГПа. Для «эталонного» алмаза этот показатель может колебаться в пределах 70 -150 ГПа в зависимости от его чистоты и метода получения (как правило, приводится величина твёрдости алмаза 115 ГПа). То же самое относится и к другим материалам: их твёрдость меняется в зависимости от условий синтеза образца, а иногда варьируется и в зависимости от направления приложенной к нему нагрузки.

1. Фуллерит (до 310 ГПа)

Полимеризованный фуллерит - самое твёрдое вещество, известное науке на данный момент. Он представляет собой молекулярный кристалл — структуру, в узлах которой находятся не отдельные атомы, а целые молекулы (фуллерены — одна из аллотропных модификаций углерода, по форме напоминающая футбольные мячики). Фуллерит оставляет царапины на алмазной поверхности, как на пластмассе.

2. Лонсдейлит (до 152 ГПа)

Предсказание существования лонсдейлита практически совпало по времени с его обнаружением в природе. Эта аллотропная модификация углерода, во многом похожая на алмаз, была найдена в метеоритном кратере. Но природный лонсдейлит, который, вероятно, образовался из графита, входившего в состав метеорита, не отличался рекордной твёрдостью. Лишь в 2009 году ученые доказали, что в отсутствии примесей лонсдейлит может быть твёрже алмаза. Высокую твёрдость ему придает примерно тот же механизм, который действует в случае вюртцитного нитрида бора.

3. Вюртцитный нитрид бора (до 114 ГПа)

Нитрид бора с вюртцитной (плотной гексагональной) кристаллической структурой твёрже, чем кажется: в момент приложения нагрузки он претерпевает локальные структурные модификации, межатомные связи в его решетке перераспределяются, и твёрдость материала вырастает на 78%.

4. Наноструктурированный кубонит (до 108 ГПа)

Кубический нитрид бора был впервые получен в 1957 году Робертом Венторфом (Robert H. Wentorf Jr.) для компании General Electric . В 1969 году компания зарегистрировала торговую марку «Боразон» для кристалла.

В СССР кубический нитрид бора был впервые синтезирован в Институте физики высоких давлений Академии наук под руководством академика Л. Ф. Верещагина . С 1965 года эльбор синтезировался в промышленных масштабах по технологии Абразивного завода «Ильич» (Ленинград).

Уникальные свойства кубонита (также известного под названиями эльбора, боразона и кингсонгита) широко используются в промышленности. Твёрдость кубонита (кубической модификации нитрида бора) близка к алмазной и составляет 80−90 ГПа. В силу закона Холла-Петча, уменьшение размера кристаллических зерен ведет к увеличению твёрдости, и ученые доказали, что наноструктурирование кубонита способно увеличить его твёрдость до 108 ГПа.

5. Нитрид углерода-бора (до 76 ГПа)

Атомы азота, углерода и бора близки по размерам. Углерод и бор образуют схожие кристаллические структуры, отличающиеся высокой твёрдостью. Ученые предпринимают попытки синтезировать сверхтвёрдые материалы, состоящие из атомов всех трех типов — и не безуспешно: например, кубическая модификация BC 2 N демонстрирует твёрдость 76 Гпа.

6. Карбид бора (до 72 ГПа)

Карбид бора — распространенный в современной промышленности материал — был получен еще в позапрошлом веке. Его микротвёрдость (49 ГПа) может быть значительно повышена введением в кристаллическую решетку ионов аргона — до 72 ГПа.

7. Бор-углерод-кремний (до 70 ГПа)

Сплавы на основе системы бор-углерод-кремний чрезвычайно устойчивы к химическому воздействию и высокой температуры, они отличаются высокой микротвёрдостью, достигающей 70 ГПа (для B 4 C-B 4 Si)

8. Борид магния-алюминия (до 51 ГПа)

Сплав бора, магния и алюминия известен своим низким коэффициентом трения скольжения (если бы этот материал не был так дорог, его можно было бы использовать для изготовления машин и механизмов, работающих без смазки) и высокой твёрдостью. Тонкие пленки AlMgB 14 , полученные методомимпульсного лазерного напыления, демонстрируют микротвёрдость до 51 ГПа.

9. Диборид рения (до 48 ГПа)

Механические свойства соединения бора и рения весьма необычны: из-за послойного чередования различных атомов диборид рения анизотропен, т. е.при измерении твёрдости по различным кристаллографическим плоскостям получаются разные значения. При испытаниях под малой нагрузкой диборид рения демонстрирует твёрдость 48 ГПа, однако при увеличении нагрузки значение твёрдости резко падает, устанавливаясь на уровне примерно 22 ГПа. Поэтому некоторые исследователи сомневаются, нужно ли причислять диборид рения к сверхтвёрдым материалам.

10. Монокристаллический субоксид бора (до 45 ГПа)

Субоксид бора, содержащий «недостаточное» количество атомов кислорода, явно демонстрирует свойства керамических материалов: высокую прочность, химическую инертность, устойчивость к истиранию при относительно невысокой плотности. Субоксид бора способен образовывать зерна в форме икосаэдров, которые не являются ни отдельными кристаллами, ни квазикристаллами — это кристаллы-двойники, стоящие из 20 «сросшихся» кристаллов-тетраэдров. Твёрдость монокристаллов субоксида бора составляет 45 ГПа.

gastroguru © 2017