Определение гумуса по методу тюрина. Определение степени гумификации органического вещества почвы по методу робинзона и жоиеса

ГОСУДАРСТВЕННЫЙ СТАНДАРТ
СОЮЗА ССР

ПОЧВЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА

ГОСТ 26213-91

КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Дата введения 01.07.93

Настоящий стандарт устанавливает фотометрический и гравиметрический методы определения органического вещества в почвах, вскрышных и вмещающих породах.

Общие требования к проведению анализов - по ГОСТ 29269 .

1. ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПО МЕТОДУ ТЮРИНА В МОДИФИКАЦИИ ЦИНАО

Метод основан на окислении органического вещества раствором двухромовокислого калия в серной кислоте и последующем определении трехвалентного хрома, эквивалентного содержанию органического вещества, на фотоэлектроколориметре.

Метод не пригоден для проб с массовой долей хлорида более 0,6 % и проб с массовой долей органического вещества более 15 %.

Предельные значения относительной погрешности результатов анализа для двусторонней доверительной вероятности Р = 0,95 составляют в процентах (отн.):

20 - при массовой доле органического вещества до 3 %;

15 - св. 3 до 5 %;

10 - св. 5 до 15 %.

Фотоэлектроколориметр.

Баня водяная.

Весы торзионные или другие с погрешностью не более 1 мг.

Пробирки стеклянные термостойкие вместимостью 50 см 3 по ГОСТ 23932 .

Штатив для пробирок.

Бюретка или дозатор для отмеривания 10 см 3 хромовой смеси.

Палочки стеклянные длиной 30 см.

Цилиндр или дозатор для отмеривания 40 см 3 воды.

Груша резиновая со стеклянной трубкой или устройство для барбатации.

Бюретка вместимостью 50 см 3 .

Колбы мерные вместимостью 1 дм 3 .

Кружка фарфоровая вместимостью 2 дм 3 .

Колба коническая вместимостью 1 дм 3 .

Колбы конические или технологические емкости вместимостью не менее 100 см 3 .

Аммоний-железо (II ) сернокислый (соль Мора) по ГОСТ 4208 или железо (II ) сернокислое 7-водное по ГОСТ 4148 .

Калия гидроокись по ГОСТ 24363 .

Калий двухромовокислый по ГОСТ 4220 .

Калий марганцовокислый, стандарт-титр для приготовления раствора концентрации с (1 / 5 КМnО 4) = 0,1 моль/дм 3 (0,1 н.).

Натрий сернистокислый по ГОСТ 195 или натрий сульфит 7-водный по ТУ 6-09.5313.

Масса пробы для анализа, мг

1.4.2. Приготовление растворов сравнения

В девять пробирок наливают по 10 см 3 хромовой смеси и нагревают их в течение 1 ч в кипящей водяной бане вместе с анализируемыми пробами. После охлаждения в пробирки приливают указанные в табл. объемы дистиллированной воды и раствора восстановителя. Растворы тщательно перемешивают барбатацией воздуха.

Таблица 2

Номер раствора сравнения

Объем воды, см 3

Объем раствора восстановителя, см 3

Масса органического вещества, эквивалентная объему восстановителя в растворе сравнения, мг

1.4.3. Фотометрирование растворов

Фотометрирование растворов проводят в кювете с толщиной просвечиваемого слоя 1 - 2 см относительно раствора сравнения № 1 при длине волны 590 нм или используя оранжево-красный светофильтр с максимумом пропускания в области 560 - 600 нм. Растворы в кювету фотоэлектроколориметра переносят осторожно, не взмучивая осадка.

1.5. Обработка результатов

1.5.1. Массу органического вещества в анализируемой пробе определяют по градуировочному графику. При построении градуировочного графика по оси абсцисс откладывают массу органического вещества в миллиграммах, соответствующую объему восстановителя в растворе сравнения, а по оси ординат - соответствующее показание прибора.

1.5.2. Массовую долю органического вещества (X ) в процентах вычисляют по уравнению

где m - масса органического вещества в анализируемой пробе, найденная по графику, мг;

К - коэффициент поправки концентрации восстановителя;

m 1 - масса пробы, мг;

100 - коэффициент пересчета в проценты.

1.5.3. Допускаемые относительные отклонения от аттестованного значения стандартного образца для двусторонней доверительной вероятности Р = 0,95 указаны в табл. .

Таблица 3

2. ГРАВИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ОРГАНИЧЕСКОГО ВЕЩЕСТВА В ТОРФЯНЫХ И ОТОРФОВАННЫХ ГОРИЗОНТАХ ПОЧВ

Метод основан на определении потери массы пробы после прокаливания при температуре 525 °С.

Отбор проб для анализа проводят по ГОСТ 28168 , ГОСТ 17.4.3.01 и ГОСТ 17.4.4.02 - в зависимости от целей исследований.

2.2. Аппаратура и реактивы - по ГОСТ 27784 .

2.3. Подготовка к анализу - по ГОСТ 27784 .

2.4. Проведение анализа - по ГОСТ 27784 .

2.5. Обработка результатов

2.5.1. Массовую долю зольности торфяных, оторфованных и других органических горизонтов почв в процентах вычисляют по

Метод И.В. Тюрина основан на окислении органического вещества почвы хромовой кислотой до образования углекислоты. Количество кислорода, израсходованное на окисление органического углерода, определяют по разности между количеством хромовой кислоты, взятой для окисления, и количеством ее, оставшимся неизрасходованным после окисления. В качестве окислителя применяют 0,4 н. раствор K2Cr2O7 в серной кислоте, предварительно разбавленной водой в соотношении 1:1.

Реакция окисления протекает по следующим уравнениям:

  • 1) 2K 2 Cr 2 O 7 +8H 2 SO 4 =2K 2 SO 4 +2Cr 2 (SO4) 3 +8H 2 O+3O 2
  • 2) 3C+3O 2 =3CO 2

Остаток хромовой кислоты, не израсходованной на окисление, оттитровывают 0,1 н. раствором соли Мора с индикаторм дифениламином. Титрование солью Мора, представляющей собой двойную соль сернокислого аммония и сернокислой закиси железа - (NH4) 2SO4. FeSO4.GH2O, идёт по следующему уравнению:

K 2 Cr 2 O 7 +7H 2 SO 4 +6FeSO 4 =7H 2 O+K 2 SO 4 +Cr 2 (SO4) 3 +3Fe 2 (SO4) 3

Применение сернокислого серебра в качестве катализатора увеличивает полноту окисления до 95% (Комарова).

Для получения надёжных результатов необходимо обратить внимание:

  • 1) на тщательную подготовку почвы к анализу;
  • 2) на точное соблюдение продолжительности кипячения при окислении органического вещества; само кипение окислительной смеси должно протекать спокойно.

Подготовка почвы к анализу . При подготовке почвы к анализу на содержание гумуса особое внимание должно быть обращено на удаление из почвы корешков и различных органических остатков растительного и животного происхождения.

Из взятого в поле и доведённого до воздушно-сухого состояния образца почвы берут среднюю пробу в количестве 50г, тщательно отбирают пинцетом корни и видимые глазом органические остатки (панцири насекомых, семена, угольки и т.д.), раздавливают почвенные комки деревянным пестиком с резиновым наконечником и вновь тщательно отбирают корни, пользуясь при этом лупой.

Затем растирают почву в фарфоровой ступке и пропускают через сито с диаметром отверстий в 1 мм, после чего из неё снова берут среднюю пробу весом 5г и повторяют отбор корешков, используя для этого следующий приём. Сухую стеклянную палочку энергично натирают сухой суконной или шерстяной тканью и быстро проводят на высоте около 10 см над почвой, распределённой тонким слоем по поверхности восковки или пергаментной бумаги.

Тонкие мелкие корешки и полуразложившиеся растительные остатки, которые до этого не удалось отобрать в связи с их малыми размерами, прилипают к поверхности наэлектризованной палочки и таким образом выносятся из почвы. Их снимают с палочки при повторном её натирании. Не следует слишком низко проводить палочкой над поверхностью почвы во избежание выноса из почвы не только органических остатков, но и мелкозёма.

В процессе отбора корешков надо неоднократно перемешивать почву и вновь распределять её тонким слоем. Операцию следует вести до тех пор, пока на палочке будут обнаруживаться лишь единичные корешки. Чистоту отбора корешков контролируют, помимо того, просмотром почвы в лупу.

По окончании отбора корешков почву снова растирают в фарфоровой, яшмовой или агатовой ступке и пропускают через сито с диаметром отверстий в 0,25 мм. Описанным выше способом должен быть подготовлен весь образец в 5г. Отбрасывать трудно поддающуюся растиранию часть образца ни в коем случае нельзя.

Почву, подготовленную вышеуказанным образом для анализа, следует хранить в пакетиках из пергаментной бумаги или восковки либо в пробирках с пробками.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Метод И.В. Тюрина основан на окислении углерода гумусовых веществ до СО2 0,4 н раствором двухромовокислого калия (К2Cr2O7). По количеству хромовой смеси, пошедшей на окисление органического углерода, судят о его количестве. Цель работы: научится определять содержание органического углерода почвы методом мокрого озоления по И.С. Тюрину. Материалы и оборудование: 1) конические колбы на 100 мл, 2) воронки, 3) 0,4 н раствор К2Cr2О7 в разбавленной Н2SО4 (1:1), 4) 0,1 н или 0,2 н раствор соли Мора, 5) 0,2% раствор фенилантраниловой кислоты, 6) бюретка для титрования, 7) электрическая плитка или газовая горелка. Ход выполнения работы: на аналитических весах берут навеску почвы 0,2-0,3 г. Навеску почвы осторожно переносят в коническую колбу на 100 мл. В колбу из бюретки приливают 10 мл хромовой смеси и содержимое осторожно перемешивают круговым движением. В колбу вставляют маленькую воронку, которая служит обратным холодильником, ставят колбу на асбестовую сетку или этернитовую плитку, затем содержимое колбы доводят до кипения и кипятят ровно 5 минут с момента появления крупных пузырьков СО2. Бурного кипения не допускают, так это приводит к искажению результатов из-за возможного разложения хромовой смеси. При массовых анализах рекомендуется кипячение заменить нагреванием в сушильном шкафу при 150°С в течение 30 минут. Колбу остужают, воронку и стенки колбы обмывают из промывалки дистиллированной водой, доводя объем до 30-40 мл. Добавляют 4-5 капель 0,2%-ного раствора фенилантраниловой кислоты и титруют 0,1н или 0,2н раствором соли Мора.

Конец титрования определяют переходом вишнево-фиолетовой окраски в зелёную. Проводят холостое определение, вместо навески почвы используя прокаленную почву или пемзу (0,20,3г). Содержание органического углерода вычисляют по формуле:

С = (100*(а - в) * КМ * 0,0003 * КН2О) * Р-1,

где С - содержание органического углерода, %; а - количество соли Мора, пошедшее на холостое титрование; в - количество соли Мора, пошедшее на титрование остатка хромовокислого калия; КМ - поправка к титру соли Мора; 0,0003 - количество органического углерода, соответствующее 1 мл 0,1н раствора соли Мора, г (применяя 0,2 н раствор соли Мора, количество органического углерода, соответствующее 1 мл соли Мора, равно 0,0006 г); КН2О - коэффициент гигроскопичности для перерасчета на абсолютно сухую навеску почвы; Р - навеска воздушно-сухой почвы, г. Вычисляют содержание гумуса из расчета, что в его составе содержится в среднем 58% органического углерода (1 г углерода соответствует 1,724г гумуса):

Гумус (%) = С(%)*1,724.

гумусовый озоление титрование

Табл. 1. Группировка почв лесных питомников таёжной зоны по обеспеченности гумусом (шкала Ленинградского НИИ лесного хозяйства

Гумус, % по Тюрину

Степень обеспеченности

Крайне бедные

Недостаточно обеспеченные

Средне обеспеченные

Хорошо обеспеченные

Размещено на Allbest.ru

...

Подобные документы

    Химический состав и органические вещества почвы. Модели строения гуминовых и фульвокислот. Методы выделения препаратов гумусовых кислот из почв. Характеристика методов исследования свойств гумусовых кислот. Сравнительный анализ методов определения гумуса.

    дипломная работа , добавлен 13.11.2011

    Определение степени опасности веществ, загрязняющих почву. Метод определения содержания микроэлементов в почве. Атомно-абсорбционное определение меди в почвенной вытяжке. Методы определения вредных веществ в почве. Применение ионоселективных электродов.

    реферат , добавлен 31.08.2015

    Характеристика климатических условий, рельефа и гидрологических условий, почвообразующих пород и естественной растительности. Структура почвенного покрова. Характеристика морфологических свойств преобладающих типов почв. Анализ содержания гумуса.

    курсовая работа , добавлен 13.05.2015

    Географическое положение и общие сведения о хозяйстве. Природные условия формирования почвенного покрова: климат, рельеф, гидрологические условия. Морфологические признаки серой лесной и дерново-карбонатной почвы. Бонитировка, охрана почвенного покрова.

    курсовая работа , добавлен 12.01.2015

    Понятие, особенности и процесс образования гумуса. Гуминовые вещества как основная органическая составляющая почвы, воды и твердых горючих ископаемых. Значение и роль гумификации в почвообразовании. Химическая структура и свойства гуминовых веществ.

    реферат , добавлен 15.11.2010

    Анализ почвенного покрова в границах лицензионных участков нефтегазодобывающего комплекса Ханты-Мансийского автономного округа - Югры. Морфологическое описание серых лесных почв. Процесс преобразования растительных остатков в серых лесных почвах.

    отчет по практике , добавлен 10.10.2015

    Гумус, его значение, пути увеличения содержания гумуса в почве. Севооборот, значение, классификация. Технологические операции, выполняемые при обработке почвы. Агротехничекие приемы. Яровой рапс. Значение. Морфологические и биологические особенности.

    контрольная работа , добавлен 20.05.2008

    Взаимодействие гумусовых веществ с минеральной частью почвы. Аэробные анаэробные процессы в почве. Их роль в плодородии и жизни растений. Агрономические особенности подзолистых почв и их окультуривание. Использование болот и торфа в сельском хозяйстве.

    контрольная работа , добавлен 12.01.2010

    презентация , добавлен 17.03.2014

    Свойства почвенного покрова Якутии и его география. Круговорот веществ и энергии. Факторы почвообразования. Воздушный режим почвы и содержание питательных веществ в ней. Распределение земельного фонда по категориям почв. Анализ сельскохозугодий.

Спектрофотометрическое определение содержания гумуса в почве по Орлову и Гриндель

Метод объемного определения гумуса по Тюрину, наиболее часто применяемый в массовых анализах, достаточно точен при значительной простоте и скорости определения. Введение фотометрического окончания вместо титрования позволяет еще более упростить ход анализа благодаря тому, что отпадает необходимость приготовления титрованных растворов вообще, и вместо титрования измеряют оптическую плотность на фотоэлектроколориметре и спектрофотометре.

Предложен ряд вариантов колориметрического и фотометрического определения гумуса, которые различаются деталями исполнения. Большинство авторов прибегают к разбавлению и отстаиванию суспензии после сжигания гумуса с последующим фотометрированием в красной области спектра. Окислителем обычно служит раствор дихромата калия в серной кислоте, но при разных соотношениях. Поскольку в растворах серной кислоты образуются ионы три- и тетрахромата (Сr3О102- и Сr4О132-), а при разбавлении раствора происходит их деполимеризация и окраска со временем (через 2-4 ч) становится более устойчивой, то фотометрирование рекомендуется проводить через несколько часов после разбавления, что обеспечивает оседание суспензии и постоянство окраски. Некоторые авторы рекомендуют добавлять сухую соль К2Сr2О7 для полноты окисления гумуса.

Упомянутые методы мало различаются, варьируя по количеству и концентрации окислителя, условиям кипячения (нагревания), конечным объемам раствора и способам измерения окраски.

Все определение складывается из двух основных операций: окисления гумуса и фотометрирования (колориметрирования) окрасок. Окисление гумуса целесообразно полностью осуществлять по методу Тюрина. Это обеспечивает сопоставимость результатов, получаемых объемным и фотометрическим методами. В то же время количество дихромата, затраченное на окисление, можно определять любым способом, не нарушая преемственности данных. Общим недостатком фотометрических методов является необходимость приготовления шкалы. Это удлиняет определение и умаляет те преимущества, которые дает фотометрическое окончание.

Принцип метода заключается в том, что при окислении гумуса дихроматом шестивалентный хром восстанавливается до трехвалентного: Cr2O72->2 Cr3+

Окраска чистого раствора дихромата калия варьирует от желтой (в разбавленных растворах) до оранжевой. Полоса поглощения Сr3+ довольно широкая, а максимум поглощения приходится на область 584-594 нм, имея среднее значение при 588-590 нм.

Различия в коэффициентах погашения ел для окисленной и восстановленной форм очень велики. В области максимума коэффициент погашения дихромата (рассчитанный на концентрацию, равную 1 ммоль-экв /100 см3 равен) 0,66, тогда как коэффициент погашения восстановленного хрома при той же длине волны всего лишь 0,062, т.е. меньше почти в 11 раз.

Использование области 590 нм дает еще одно важное преимущество. Измерив оптическую плотность при 590 нм, мы непосредственно узнаем количество восстановленного хрома, которое эквивалентно общему количеству гумуса (восстановителя) в анализируемой пробе. Таким образом, отпадает необходимость определения «по разности», а, следовательно, и установления исходного количества дихромата в окислительной смеси. Более того, благодаря нулевой оптической плотности дихромата при л 590 нм не нужно титровать исходную окислительную смесь; ее можно готовить путем взятия навески соли на технических весах. Раствор дихромата приливают в этом случае к навеске почвы не из бюретки, а мерным цилиндром. Это же обстоятельство позволяет даже добавлять к окислительной смеси сухую соль, как было указано выше.

Высота максимума, или оптическая плотность, при 590 нм зависит только от количества восстановителя - введенного в раствор дихромата. Характер спектров показывает, что наиболее благоприятна для количественного определения область 588-592 нм, где оптическая плотность максимальная, а на кривой имеется небольшой горизонтальный участок. Это значительно снижает возможные ошибки за счет неточного измерения (установления) длины волны.

С - концентрация Сr3+иона,

l - толщина поглощающего слоя (длина кюветы), см;

е590 - коэффициент погашения при 590 нм.

Если концентрацию восстановителя выразить в ммоль-экв/100 мл раствора, то можно вычислить коэффициент погашения:

е590= 0,06983 мгэкв-1 см-1 100 мл.

Проверка метода показала, что определение гумуса по Тюрину и измерение его содержания на спектрофотометре при 590 нм дают хорошее совпадение результатов. Коэффициенты корреляции результатов, полученных спектрометрическим и объемным методом, очень высоки и достигают 0,99.

Ход анализа. Берут навеску подготовленной к анализу почвы - 0,3 г; эта навеска пригодна при содержании гумуса от 0,6-0,8 до 12-13%; при большем или меньшем количестве гумуса навеску изменяют. Переносят навеску в коническую колбу вместимостью 100 мл, заливают 20 мл 0,4 н (по дихромату) окислительной смеси, отмеривая раствор дихромата мерным цилиндром. Осторожно перемешивают содержимое, закрывают горло колбы маленькой воронкой и кипятят на электроплитке с толстой асбестовой сеткой точно 5 мин с начала момента кипения. Смесь охлаждают, переносят в мерный цилиндр вместимостью 100 мл, ополаскивая колбу дистиллированной водой, и доводят объем до 100 мл, добавляя воду. Для ускорения анализа можно разбавлять смесь прямо в конических колбах. Цилиндр (или колбу) закрывают пробкой, смесь хорошо перемешивают и оставляют на ночь. Отстоявшийся раствор осторожно (не взмучивая осадка) сливают в кювету фотоэлектроколориметра длиной 3 или 5 см. При содержании гумуса до 6-7 % можно пользоваться кюветой 5 см, при большем содержании гумуса - кюветой 3 см.

Измеряют оптическую плотность раствора на спектрофотометре (при 590 нм) или на фотоэлектроколориметре со светофильтром (610 нм), устанавливая "нуль" приборов не по воде, а по холостому раствору (прокипяченный и разбавленный раствор окислительной смеси).

где: D - оптическая плотность;

ел - коэффициент погашения;

l - длина кюветы, см;

т - навеска почвы, г;

d - удельная масса твердой фазы почвы.

Численные коэффициенты учитывают фактор разбавления и эквивалентный вес углерода.

Изменением объема за счет твердой фазы можно пренебречь при величине навески 0,3-0,5 г. Тогда получим:

Окончательные расчетные формулы получим, подставляя численные значения ел и l для спектрофотометров при л=590 нм:

кювета 3 см, %С = 1,43 ; кювета 5 см, %С = 0,86 ;

для фотоэлектроколориметра, светофильтр с л = 610 нм:

кювета 3 см, %С = 1,82 ; кювета 5 см, %С = 1,09

Новые значения коэффициентов погашения легко найти по стандартному оттитрованному раствору соли Мора.

С этой целью в серию колб берут по 20 мл 0,4 н окислительной смеси (точно отмеряя бюреткой), кипятят 5 мин и по охлаждении в колбы последовательно добавляют 1, 3, 5, 10, 25 см3 0,2 н (титрованного) раствора соли Мора. Объем раствора доводят до 100 см3 (в мерных колбах), и измеряют оптические плотности растворов с тем светофильтром, который предполагается использовать для определения гумуса. Коэффициент погашения находят по формуле закона БЛБ для каждого раствора в отдельности, а затем вычисляют среднее значение .

Определение степени гумификации органического вещества почвы по методу Робинзона и Жоиеса

Принцип метода состоит в том, что 6 %-й раствор пероксида водорода при нагревании разрушает и отчасти растворяет некоторые органические соединения, а на другие не действует и, по-видимому, разрушает именно аморфные бесструктурные соединения, структурные же (клетчатка, лигнин) не поддаются действию этого реактива.

Ход определения. Навеска почвы в 1-2 г помещается стакан вместимостью в 500 см3, сюда же приливают 60 см3 6% -го раствора пероксида водорода и нагревают 15 мин при 100 °С, а под конец доводят до кипения. Если реакция протекала энергично, то операцию с прибавлением новой порции пероксида водорода необходимо повторять до тех пор, пока пероксид водорода не перестанет реагировать с почвой. После этого содержимое фильтруется, остаток промывается несколько раз горячей водой, затем смывается с фильтра во взвешенную фарфоровую чашечку, просушивается до постоянного веса при 100 °С и взвешивается. Затем сухой остаток прокаливают и снова взвешивают. Разность между массой сухого и прокаленного остатка дает количество неразложившегося перекисью водорода органического вещества ("негумифицированного"), конечно, вместе с химически связанной водой.

Более точные результаты можно получить, если из массы сухой навески вычесть массу сухого остатка такой же навески после обработки ее, по описанию авторов, пероксидом водорода; так как количество воды, химически связанной с минеральной частью почвы и с тем органическим веществом, которое не подверглось действию пероксида водорода, не должно заметно измениться от воздействия пероксида водорода, то означенная разность должна дать довольно точно количество гумифицированного органического вещества почвы вместе с его химически связанной водой.

Определив методами Густавсона или Кнопа, содержание углерода в остатке почвы после ее обработки пероксидом водорода и зная содержание в почве всего углерода органического вещества почвы и углерода негумифицированных органических веществ, узнаем по разности содержание в почве углерода гумифицированных органических соединений.

Метод И. В. Тюрина основан на окислении органического вещества почвы хромовой кислотой до образования углекислоты. Количество кислорода, израсходованное на окисление органического углерода, определяют по разности между количеством хромовой кислоты, взятой для окисления, и количеством ее, оставшимся неизрасходованным после окисления. В качестве окислителя применяют 0,4 и. раствор К2Сr2O7 в серной кислоте, предварительно разбавленной водой в соотношении 1:1.
Реакция окисления протекает по следующим уравнениям:


Остаток хромовой кислоты, не израсходованной на окисление, оттитровывают 0,1 н. раствором соли Мора с индикатором дифениламином. Титрование солью Мора, представляющей собой двойную соль сернокислого аммония и сернокислой закиси железа - (NH4)2SO4 FeSO4 6Н2O, идет по следующему уравнению:

Полнота окисления органического вещества при соблюдении всех условий метода, указанных ниже, составляет 85-90% величины окисления методом сухого сжигания (по Густавсону).
Применение сернокислого серебра в качестве катализатора увеличивает полноту окисления до 95% (Комарова).
Для получения надежных результатов необходимо обратить внимание: 1) на тщательную подготовку почвы к анализу и 2) на точное соблюдение продолжительности кипячения при окислении органического вещества; само кипение окислительной смеси должно протекать спокойно.
Метод дает хорошую сходимость параллельных анализов, быстр, не требует специальной аппаратуры (в связи с чем может быть использован и в экспедиционных условиях) и в настоящее время является общепринятым, особенно при проведении массовых анализов.
Подготовка почвы к анализу. При подготовке почвы к анализу на содержание гумуса особое внимание должно быть обращено на удаление из почвы корешков и различных органических остатков растительного и животного происхождения.
Из взятого в поле и доведенного до воздушно-сухого состояния образца почвы берут среднюю пробу в количестве 50 г, тщательно отбирают пинцетом корни и видимые глазом органические остатки (панцири насекомых, семена, угольки и т. д.), раздавливают почвенные комки деревянным пестиком с резиновым наконечником и вновь тщательно отбирают корни, пользуясь при этом лупой.
Затем растирают почву в фарфоровой ступке и пропускают через сито с диаметром отверстий в 1 мм, после чего из нее снова берут среднюю пробу весом 5 г и повторяют отбор корешков, используя для этого следующий прием. Сухую стеклянную палочку энергично натирают сухой суконной или шерстяной тканью и быстро проводят на высоте около 10 см над почвой, распределенной тонким слоем по поверхности восковки или пергаментной бумаги.
Тонкие мелкие корешки и полуразложившиеся растительные остатки, которые до этого не удалось отобрать в связи с их малыми размерами, прилипают к поверхности наэлектризованной палочки и таким образом выносятся из почвы. Их снимают с палочки при повторном ее натирании. Не следует слишком низко проводить палочкой над поверхностью почвы во избежание выноса из почвы не только органических остатков, но и мелкозема.
В процессе отбора корешков надо неоднократно перемешивать почву и вновь распределять ее тонким слоем. Операцию следует вести до тех пор, пока на палочке будут обнаруживаться лишь единичные корешки. Чистоту отбора корешков контролируют, помимо того, просмотром почвы в лупу.
По окончании отбора корешков почву снова растирают в фарфоровой, яшмовой или агатовой ступке и пропускают через сито с диаметром отверстий в 0,25 мм. Описанным выше способом должен быть подготовлен весь образец в 5 г. Отбрасывать трудно поддающуюся растиранию часть образца ни в коем случае нельзя.
Почву, подготовленную вышеуказанным образом для анализа, следует хранить в пакетиках из пергаментной бумаги или восковки либо в пробирках с пробками.
Ход анализа. Навеску воздушно-сухой почвы для анализа на гумус берут на аналитических весах. Размер навески зависит от предполагаемого содержания гумуса в почве, причем учитывается тип почвы (чернозем, подзолистая и т. д.) и глубина взятия образца.
При содержании гумуса от 7 до 10% И. В. Тюрин рекомендует навеску в 0,1 г; при 4-7% - 0,2 г; при 2-4% - 0,3 г; меньше 2% - 0.5 г. В случае песчаных почв с малым содержанием гумуса навеску можно увеличить до 1 г.
При очень высоком содержании гумуса (свыше 15-20%) его определение по методу Тюрина становится ненадежным, так как не достигается полнота окисления.
Навески лучше брать точные - 0,1; 0,2 г, что облегчает в дальнейшем вычисления. Для взятия точных навесок можно пользоваться тарированным часовым стеклом диаметром 2,5-3 см, с которого навеску целиком переносят в колбу для сжигания при помощи маленького шпателя и кисточки для акварельных красок. Определение гумуса по Тюрину одновременно можно вести в 20-30 навесках.
Навески помещают в сухие конические колбы на 100 мл из обыкновенного стекла, туда же добавляют на кончике ножа порошкообразное сернокислое серебро. При выполнении массовых анализов сернокислое серебро не применяется. Для возможности сравнения получаемых в этом случае результатов с методом сухого сжигания И. В. Тюрин приводит коэффициент 1,17 (1936). Затем в каждую колбу приливают по 10 мл 0,4 н. раствора К2Сr2O7, приготовленного на смеси одной части H2SO4 (уд. веса 1,84) и одной части дистиллированной воды.
Раствор бихромата калия следует приливать из бюретки, отмеривая необходимый объем каждый раз от нуля и давая жидкости стекать всегда с одинаковой скоростью. Можно пользоваться также пипеткой, но обязательно снабженной в верхней части предохранительными шариками.
Очень удобна в данном случае делительная воронка из тугоплавкого стекла, приспособленная для работы с крепкими кислотами. Пользование такой воронкой намного ускоряет работу и делает ее безопасной.
После приливания раствора К2Сr2O7 в горлышко колб вставляют воронки диаметром около 4 см, содержимое колб осторожно перемешивают (следя, чтобы почва не прилипала к их стенкам), после чего колбы ставят на уже горячую этернитовую или песчаную электроплитку, или на плитку с обнаженной спиралью, но прикрытую слоем асбеста. Можно пользоваться также газовыми горелками, а в экспедиционных условиях - примусом или керосинкой, помещая нагревательный прибор под песчаную баню (сковорода с прокаленным кварцевым песком).
Содержимое колб доводят до кипения и кипятят ровно 5 мин. Необходимо точно отмечать начало кипения жидкости, не смешивая его с появлением в начале нагревания мелких пузырьков воздуха. Кипение должно быть равномерным и умеренным; выделение пара из воронки и подпрыгивание последней недопустимы. Сильного кипения следует избегать, чтобы не изменить концентрацию серной кислоты, увеличение которой может вызвать разложение хромовой кислоты. Во избежание слишком бурного кипения, кипячение на плитках с обнаженной спиралью недопустимо.
После 5-минутного кипячения колбы с нагревательного прибора снимают, дают им остыть, обмывают воронки над колбами с внутренней и наружной стороны дистиллированной водой из промывалки и содержимое колб количественно переносят в конические колбы на 250 мл, несколько раз тщательно ополаскивая колбу, в которой производилось окисление. Объем жидкости после переноса в колбу на 250 мл должен составлять 100-150 мл. Цвет жидкости - оранжево-желтый или зеленовато-желтый; позеленение ее свидетельствует о недостатке окислителя; анализ в этом случае необходимо повторить, уменьшив навеску.
К жидкости прибавляют 8 капель раствора дифениламина, являющегося индикатором, и титруют оставшуюся не израсходованной после окисления органического вещества хромовую кислоту 0.1 н. раствором соли Мора. Индикатор следует вносить непосредственно перед титрованием. Титрование ведут на холоду. Красно-бурая окраска жидкости, появляющаяся после прибавления дифениламина, при титровании раствором соли Мора постепенно переходит в интенсивно синюю, а затем в грязно-фиолетовую. С этого момента титрование ведут осторожно, прибавляя соль Мора по 1 капле и тщательно перемешивая содержимое колбы. Конец титрования - изменение грязно-фиолетовой окраски раствора в бутылочно-зеленую; после некоторого стояния (10-15 мин.) окраска жидкости становится зеленой. Появление при титровании ярко-зеленой окраски указывает на избыток соли Мора, т. е. на то, что раствор перетитрован; анализ в этом случае необходимо повторить.
Для устранения влияния ионов трехвалентного железа, которое окисляет индикатор и вызывает преждевременное изменение окраски раствора, применяют 85%-ную ортофосфорную кислоту. Ее вносят в колбу перед титрованием в количестве 2,5 мл; изменение окраски в конце титрования в присутствии фосфорной кислоты очень резкое и вызывается 1-2 каплями раствора соли Мора.
Одновременно с основными анализами в той же последовательности проводят холостой (в трехкратной повторности) для установления соотношения между 10 мл раствора хромовой смеси и раствором соли Мора. Для равномерного кипения жидкости при холостом анализе в колбу перед приливанием раствора хромовой смеси обязательно вносят около 0,1-0,2 г растертых в порошок прокаленных пемзы или почвы. В противном случае происходит неизбежное при кипячении чистого раствора перегревание, которое может вызвать разложение хромовой кислоты. В остальном поступают согласно описанному ходу анализа.
При проведении больших партий анализов на содержание гумуса по методу Тюрина (30-60 анализов единовременно) можно делать перерывы на следующих этапах работы: взятие навесок - один день; окисление, перенос в колбы для титрования и титрование - на другой день. Или, что менее желательно, взятие навесок и окисление проводить в один день, титрование - на следующий. В последнем случае содержимое колб после сжигания должно быть разбавлено и перенесено в колбы для титрования. Титрование холостых анализов в этом случае также должно быть оставлено до следующего дня. Титрование каждой партии необходимо всегда вести при одинаковых условиях освещения (при дневном или электрическом свете).
gastroguru © 2017