Почему от мыльной воды металл не ржавеет. Почему ржавеет железо? Пути защиты от коррозии

Коррозия металла является широко распространенной причиной, приводящей в негодность различные детали из металла. Коррозией металла (или ржавлением) называют разрушение металла под воздействием физических и химических факторов. К факторам, вызывающим коррозию, относят природные осадки, воду, температуру, воздух, различные щелочи и кислоты и т.д.

1

Коррозия металла становится серьезной проблемой при строительстве, в быту и на производствах. Чаще всего конструкторы предусматривают защиту металлических поверхностей от ржавчины, но иногда ржавление происходит на незащищенных поверхностях и на специально обработанных деталях.

Металлические сплавы лежат в основе жизнедеятельности человека, они окружают его практически везде: в быту, на работе, в процессе отдыха. Не всегда люди замечают металлические вещи и детали, но они постоянно им сопутствуют. Различные сплавы и чистые металлы являются самыми производимыми веществами на нашей планете. Современная промышленность выпускает различные сплавы в 20 раз больше (по массе), чем все остальные материалы. Несмотря на то что металлы считаются одними из наиболее прочных веществ на Земле, они могут разрушаться и терять свои характеристики в результате процессов ржавления. Под воздействием воды, воздуха и других факторов происходит процесс окисления металлов, который и называют коррозией. Несмотря на то что корродировать может не только металл, но и каменные породы, ниже будут рассмотрены процессы, связанные именно с металлами. Здесь стоит обратить внимание на то, что некоторые сплавы или металлы больше подвержены коррозии, чем другие. Это обусловлено скоростью протекания процесса окисления.

Процесс окисления металлов

Самое распространенное вещество в сплавах - это железо. Коррозия железа описывается следующим химическим уравнением: 3O 2 +2H 2 O+4Fe=2Fe 2 O 3 . H 2 O. Полученный в результате оксид железа и является той рыжей ржавчиной, портящей предметы. Но рассмотрим виды коррозии:

  1. Водородная коррозия. На металлических поверхностях практически не встречается (хотя теоретически возможна). В связи с этим описываться не будет.
  2. Кислородная коррозия. Аналогична водородной.
  3. Химическая. Реакция происходит из-за воздействия металла с каким-либо фактором (например, воздухом 3O 2 +4Fe=2Fe 2 O 3) и протекает без образования электрохимических процессов. Так, после воздействия кислорода с поверхностью появляется оксидная пленка. На некоторых металлах такая пленка достаточно прочна и не только защищает элемент от разрушительных процессов, но и повышает его прочность (например, алюминий или цинк). На некоторых металлах такая пленка очень быстро отслаивается (разрушается), например, у натрия или калия. А большинство металлов разрушаются достаточно медленно (железо, чугун и т.д.). Так, например, происходит коррозия чугуна. Более часто ржавление происходит при контакте сплава с серой, кислородом, хлором. Из-за химической коррозии ржавеют сопла, арматура и т.д.
  4. Электрохимическая коррозия железа. Данный вид ржавления происходит в средах, которые проводят электричество (проводники). Время разрушения различных материалов при электрохимических реакциях разное. Электрохимические реакции наблюдаются в случаях контакта металлов, которые находятся на расстоянии в ряду напряженности. Например, изделие изготовленное из стали, имеет медные напайки/крепления. При попадании воды на соединения медные части будут катодами, а сталь - анодом (каждая точка имеет свой электрический потенциал). Скорость протекания таких процессов зависит от количества и состава электролита. Для протекания реакций нужно наличие 2 разных металлов и электропроводящей среды. При этом разрушение сплавов прямо пропорционально зависит от силы тока. Чем больше ток, тем быстрее реакция, чем быстрее реакция, тем быстрее разрушение. В некоторых случаях катодами служат примеси сплава.

Электрохимическая коррозия железа

Также стоит отметить подвиды, которые бывают при ржавлении (описывать не будем, только перечислим): подземная, атмосферная, газовая, при разных видах погружения, сплошная, контактная, вызываемая трением и т.д. Все подвиды можно отнести к химическому или электрохимическому ржавлению.

2

При строительстве часто встречается коррозия арматуры и сварных конструкций. Коррозия часто происходит из-за несоблюдения правил хранения материала или невыполнения работ по обработке прутьев. Коррозия арматуры довольно опасна, поскольку арматуру закладывают для усиления конструкций, и в результате разрушения прутьев возможен обвал. Коррозия сварных швов не менее опасно, чем коррозия арматуры. Это также значительно ослабит шов и может привести к разрыву. Есть достаточно много примеров, когда ржавчина на силовых конструкциях приводит к обрушению помещений.

Другие часто встречающиеся в быту случаи ржавления - порча бытовых орудий труда (ножей, столовых приборов, инструмента), порча металлоконструкций, порча средств передвижения (как наземных, так и воздушных и водных) и т.д.

Пожалуй, самые часто встречающиеся ржавые вещи - это ключи, ножи и инструменты. Все эти предметы подвергаются ржавлению из-за того, что трением снимается защитное покрытие, которое оголяет основу.

Основа подвергается процессам разрушения из-за контактов с агрессивными средами (особенно ножи и инструменты).

Разрушения из-за контактов с агрессивными средами

Кстати, разрушения вещей, которые часто используются в быту, можно наблюдать практически повсеместно и регулярно, в то же время некоторые металлические предметы или конструкции могут простоять ржавыми десятилетия и будут исправно выполнять свои функции. Например, ножовка, которой часто пилили бревна и оставили на месяц в сарае, быстро проржавеет и может сломаться в процессе работы, а столб с дорожным знаком может простоять десять, а то и более лет ржавым и не разрушится.

Поэтому все металлические вещи следует защищать от коррозии. Методов защиты несколько, но все это химия. Выбор такой защиты зависит от типа поверхности и действующего на нее разрушительного фактора.

Для этого поверхность тщательно очищают от грязи и пыли, для того чтобы исключить возможность непопадания защитного покрытия на поверхность. Затем ее обезжиривают (для некоторых типов сплава или металла и для некоторых защитных покрытий это является необходимым), после чего наносят защитный слой. Наиболее часто защиту обеспечивают лакокрасочные материалы. В зависимости от металла и факторов используются разные лаки, краски и грунты.

Другой вариант - нанесение тонкого защитного слоя из другого материала. Обычно этот способ практикуется на производстве (например, оцинковка). В итоге потребителю практически ничего не требуется делать после приобретения вещи.

Нанесение тонкого защитного слоя

Другой вариант - создание специальных сплавов, которые не окисляются (например, нержавейка), однако они не гарантируют 100% защиты, более того, некоторые вещи из таких материалов окисляются.

Важными параметрами защитных слоев являются толщина, срок службы и скорость разрушения под активным неблагоприятным воздействием. При нанесении защитного покрытия крайне важно точно вписаться в допустимую толщину слоя. Обычно производители лакокрасочных материалов указывают его на упаковке. Так, если слой будет больше максимально допустимого, то это вызовет перерасход лака (краски), и слой может разрушаться под сильным механическим воздействием, более тонкий слой может стираться и сократить срок защиты основы.

Правильно выбранный защитный материал и правильно нанесенный на поверхность гарантирует на 80% то, что деталь не будет подвержена коррозии.

3

Многие люди в быту не задумываются над тем, как защитить свои вещи ото ржи. И получают проблему в виде испорченного предмета. Как правильно решить эту проблему?

Удаление ржавчины с детали

Для того чтобы произвести восстановление вещи или детали от ржавчины, первым делом следует снять весь рыжий налет до чистой поверхности. Он снимается с помощью наждачной бумаги, напильников, сильными реагентами (кислотами или щелочами), но особую славу в этом заслужили напитки типа «Кока-Колы». Для этого вещь погружают полностью в емкость с чудо-жидкостью и оставляют на некоторое время (от нескольких часов до нескольких суток - время зависит от вещи и поврежденной площади).

Рыжие пятна на стальных изделиях

Согласно данным ООН, каждая страна в год теряет от 0,5 до 7-8% валового национального продукта из-за коррозии. Парадокс заключается в том, что менее развитые страны теряют меньше, чем развитые. А 30% всех выпускаемых стальных изделий на планете идет на замену проржавевшим. Поэтому настоятельно рекомендуется отнестись к этой проблеме серьезно.

ПЕРВОЕ ИЗ НИХ – МЕТЕОРИТНОЕ, А ВТОРОЕ – АСТЕРОИДНОЕ-ЗЕМНОЕ

Уникальная железная Кутубская колонна в Индии, которая не ржавеет более тысячи лет!!!
В Индии, на территории комплекса Кутб-Минар в Дели находится один из самых загадочных в мире предметов – знаменитая Железная колонна. Ее назывют Кутубской колонной, или колонной Махарсули. Её стоило бы отнести к одному из того, что сейчас принято называть «чудеса света», ибо современная наука сам факт ее существования, иначе как чудом объяснить не может. В том виде, в котором она есть, она просто существовать не может!
На этой колонне имеется санскритское стихотворение, которое говорит о том, что данная колонна поставлена в период правления царя Чандрагупты II из династии Гуптов, царствовавшего между 381 и 414 гг. нашей эры. Хотя это не подтверждает изготовление колонны именно в этот период – не исключено, что сама колонна была изготовлена существенно раньше, а надпись нанесена позднее. На сегодняшний момент Кутубская колонна, пожалуй, один из самых загадочных памятников индийской культуры.
Изначально Железная колонна увенчивалась изображением мифической птицы Гаруды, посвящалась богу Вишну и находилась в другом месте Индии. Позднее мусульманские завоеватели, не понимая толком с чем имеют дело, перенесли ее во двор мечети Кувват уль-Ислам. Скорее всего, именно тогда с колонны исчезла птица Гаруда и куда делась неизвестно.

2)
КУТУБСКАЯ КОЛОННА ИМЕЕТ СЛЕДУЮЩИЕ ХАРАКТЕРИСТИКИ: ВЫПОЛНЕНА ИЗ ЧИСТОГО ЖЕЛЕЗА, МОНОЛИТНА, ТО ЕСТЬ НЕ ИМЕЕТ НИ ОДНОГО СВАРНОГО ИЛИ ЛЮБОГО ДРУГОГО СОЕДИНИТЕЛЬНОГО ШВА, ВЫСОТА – 7,3 МЕТРА, ВЕС – БОЛЕЕ 6,5 ТОНН; ДИАМЕТР У ОСНОВАНИЯ – 42 СМ., ДИАМЕТР У ВЕРХА – 30 СМ.. НО НЕ ЭТО САМОЕ ИНТЕРЕСНОЕ – В МИРЕ
ЕСТЬ КУДА БОЛЕЕ МАСШТАБНЫЕ РЕЛИГИОЗНЫЕ ИЛИ СИМВОЛИЧЕСКИЕ РЕАЛИЗАЦИИ. ВООБЩЕ, В ТРОПИЧЕСКОМ И ОЧЕНЬ ВЛАЖНОМ КЛИМАТЕ ИНДИИ, ПРЕДМЕТЫ ИЗ ЖЕЛЕЗА РЖАВЕЮТ ОЧЕНЬ БЫСТРО, НО КОРРОЗИЯ ДАННУЮ КОЛОННУ

СОВЕРШЕННО НЕ ЗАТРОНУЛА – ОНА СТОИТ УЖЕ БОЛЕЕ 1500 ЛЕТ (ЧТО ПОДТВЕРЖДАЕТСЯ ДОКУМЕНТАЛЬНО) И НЕ ИМЕЕТ НИ МАЛЕЙШИХ СЛЕДОВ РЖАВЧИНЫ. НИКАКИХ! КАК БУДТО НАХОДИТСЯ ОНА НЕ ВО ВЛАЖНОЙ АТМОСФЕРЕ, А ЗАПАЯНА В БЕЗВОЗДУШНОЙ КОЛБЕ. (ЭНЦИКЛОПЕДИЯ).

ПОЧЕМУ РЖАВЕЕТ ЖЕЛЕЗО?

Если оставить какой-то железный предмет в сыром и влажном месте на несколько дней, он
покроется ржавчиной, как если бы его покрасили красноватой краской.
Что такое ржавчина? Почему она образуется на железных и стальных предметах? Ржавчина - это
окись железа. Она образуется в результате «сгорания» железа при соединении с кислородом,
растворенным в воде.
Это значит, что при отсутствии в воздухе влаги и воды вообще отсутствует растворенный в воде
кислород и ржавчина не образуется.
Если капля дождя попадает на блестящую железную поверхность, она остается прозрачной в
течение короткого периода времени. Железо и кислород, находящийся в воде, начинают
взаимодействовать и образуют окись, то есть ржавчину, внутри капли. Вода становится
красноватой, и ржавчина плавает в воде в виде мелких частиц. Когда капля испарится, остается
ржавчина, образуя красноватый слой на поверхности железа.
Если уж ржавчина появилась, она будет расти и в сухом воздухе. Это происходит потому, что
пористое пятно ржавчины поглощает влагу, содержащуюся в воздухе, - она притягивает и
удерживает ее. Вот почему легче предупредить ржавчину, чем остановить ее, когда она появилась.
Проблема предупреждения ржавчины очень важна, так как изделия из железа и стали должны долго храниться. Иногда их покрывают слоем краски или пластмассы. А что бы ты сделал, чтобы
предохранить от ржавчины боевые корабли, когда они не используются? Эта проблема решена с
помощью поглотителей влажности. Такие механизмы заменяют влажный воздух в отсеках на сухой.
Ржавчина в таких условиях появиться не может! (Энциклопедия).

Известно, что каждое явление природы, в том числе – ржавеет и не ржавеет, как следствие, основаны на причине.

Первопричина колебаний и явлений природы, как единая точка зрения на Вселенную, была обнаружена (в том числе) и на таком опыте: падающий на твёрдые кристаллы свет отражается с рассеиванием. При понижении

3)
температуры кристаллов рассеивание уменьшается до некоторого предела и, вопреки классическим представлениям, сохраняется при дальнейшем охлаждении. В связи с этим учёные пришли к выводу, что в природе
существуют ничем не уничтожимые колебания частиц (первичное движение) с некоторой «нулевой» амплитудой А и энергией равной постоянной Планка: h=6,626 10-34, Дж/Т,
(см. Нулевые колебания, квантовая механика из Википедии–свободной энциклопедии).
Действия ничем неуничтожимых “нулевых” притягивающих и отталкивающих векторов объёмно колеблющихся тел в едином времени,
представляют природную первопричину (диффузия, броуновское движение). А следствием, вторичным, являются результаты их всех
взаимодействий, обладающие (Дао-божественно-генетически-термодинамическим) само организующим строительно-разрушительным ходом: (растянутым во времени) - от рождения „чего-либо“, взросления, старения и распада во всех вселенских масштабах.

Период полураспада квантово-механической системы (частицы, ядра, атома…) – время Т, в течение которого система распадается с вероятностью;. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада Т количество выживших частиц уменьшится в среднем в 2 раза. Например, период полураспада:

Калия – 39,1 (19) составляет Т=1,28 106 лет;
урана – 238 (92) Т=4,5 109 лет;
тория – 232 (90) Т=1,41 1010 лет. (Энциклопедия).

Планета Земля предположительно образовалась из астероидного пояса. Астероиды, состоящие из элементов таблицы Менделеева и их сочетаний, в виде платформ, щитов различных наименований и размеров, некогда составлявшие вращающийся между Венерой и Марсом пояс, (при сохранении количества движения), сложились, подобно вееру, в дубль планеты – Землю и Луну. Аналогично из своих астероидных поясов образовались все планеты Солнечной системы. Астероидный пояс между Марсом и Юпитером – это не распавшаяся планета Фаэтон, а будущая. При переходе астероидного пояса в гео – селеновые объекты, – его различных наименований платформы, плиты, щиты и т. д., собираясь в кучу, разбивались и дробились, но между ними оставались пустоты. Действие гравитации и времени вытесняло пустоты. А когда наступил период распада, то температура Земли начала повышаться. Ледяные астероиды (а они могли быть, в том числе, и в центре) – превращались в воду. Гравитация, как основа тектоники, вынуждала более плотным телам опускаться к центру Земли, вытесняя менее плотные объекты и воду, изменяя рельеф местности, создавая перепады по высоте. Несолёная вода (источники) в виде атмосферных

4)
осадков, рек, морей и океанов размывали выступающие на поверхность астероиды (в том числе соли), из которых образовались осадочные месторождения полезных ископаемых, например: железа, марганца, угля…и
солёность воды в океанах. Тогда как не размытые астероиды стали представлять коренные месторождения полезных ископаемых, в том числе нефти и газа. (См. www.oskar-laar.at.ua стр. 22-23).
А теперь остаётся сравнить возрасты нержавеющего метеоритного железа Кутубской колонны с железом земного происхождения.

Пусть (условно) единицей измерения времени каждого периода Тт (рождения-Тт, взросления-Тт, старения-Тт, распада-Тт), будет период полураспада

Тория – 232 (90) Тт = 1,41 1010 лет.

Тогда земное железо будет иметь возраст четыре единицы 4Тт=Тт+Тт+Тт+Тт, а Кутубское железо – всего одну единичку Тт. Ответ лежит на поверхности:

Кутубское метеоритное железо молодое, обладает иммунитетом, поэтому не ржавеет.

А земное железо – старое (распадающееся, изменившее свойства), уже утратило иммунитет, поэтому ржавеет.

Как и полагается первопричина – одна – возраст, а следствия – разные.
В том-же ключе: усталость металла, аппарат не выдержал нагрузки, появилась трещина и так далее.

Возможно учёные-дегустаторы будут учитывать „стаж наработки” и возрастные нагрузки для железа.

Рецензии

"Планета Земля предположительно образовалась из астероидного пояса" - "предположительно!" вот и вся основа этой работы...
Объяснить (притянуть за уши) можно все, что угодно... особенно если есть имя в науке... только будет ли это правдой в последнем (или первом...) значении.
Помнится, Капица не смог объяснить почему чаинки (при размешивании) собираются в центре стакана... вернее объяснил... сложные течения (упал в глазах).
Есть такие ученые - дарвины (с маленькой буквы и с полным презрением)... они умеют предполагать (ржунимагу)... вот главное, таким не стать... лучше сказать: "Мы этого пока не знаем."

И расскажите уж, наконец:
- Что такое огонь?
Потом можно и в дебри лезть.

Почему ржавеет железо?

Если оставить какой-то железный предмет в сыром и влажном месте на несколько дней, он покроется ржавчиной, как если бы его покрасили красноватой краской.

Что такое ржавчина? Почему она образуется на железных и стальных предметах? Ржавчина - это окись железа. Она образуется в результате «сгорания» железа при соединении с кислородом, растворенным в воде.

Это значит, что при отсутствии в воздухе влаги и воды вообще отсутствует растворенный в воде кислород и ржавчина не образуется.

Если капля дождя попадает на блестящую железную поверхность, она остается прозрачной в течение короткого периода времени. Железо и кислород, находящийся в воде, начинают взаимодействовать и образуют окись, то есть ржавчину, внутри капли. Вода становится красноватой, и ржавчина плавает в воде в виде мелких частиц. Когда капля испарится, остается ржавчина, образуя красноватый слой на поверхности железа.

Если уж ржавчина появилась, она будет расти и в сухом воздухе. Это происходит потому, что пористое пятно ржавчины поглощает влагу, содержащуюся в воздухе, - она притягивает и удерживает ее. Вот почему легче предупредить ржавчину, чем остановить ее, когда она появилась. Проблема предупреждения ржавчины очень важна, так как изделия из железа и стали должны долго храниться. Иногда их покрывают слоем краски или пластмассы. А что бы ты сделал, чтобы предохранить от ржавчины боевые корабли, когда они не используются? Эта проблема решена с помощью поглотителей влажности. Такие механизмы заменяют влажный воздух в отсеках на сухой. Ржавчина в таких условиях появиться не может!

МОУ Средняя общеобразовательная школа п. Новопавловка

Петровск-Забайкальского района Забайкальского края

Исследовательская работа по теме:

Почему вода ржавая?

Работу выполнил ученик 2-А класса

Ионинский Дмитрий,

п. Новопавловка

ВВЕДЕНИЕ

Теоретическая часть

Что такое ржавчина

Роль металлов в жизнедеятельности человека

Практическая часть

ОПЫТ 1. «В какой воде металлы ржавеют быстрее всего»

ОПЫТ 2. «В какой среде металлы ржавеют быстрее всего»

ОПЫТ 3. «Как различные металлы противостоят коррозии»

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Я заметил, что если некоторое время не откачивать воду из скважины, то она становится желтоватого цвета. Мне стало интересно, а почему вода желтеет? От папы я узнал, что это ржавчина.

Цель работы : узнать, почему ржавчина образуется на железе, в каких растворах образуется ржавчина и выяснить методы защиты от ржавчины.

Для достижения поставленной цели необходимо решить ряд задач :

· Узнать, что такое ржавчина, почему она возникает (теоретически).

· Путем опыта получить в домашних условиях ржавчину на железных гвоздях в различных средах.

· Проанализировать и сравнить результаты наблюдений данного эксперимента и сделать выводы.

Объект исследования : железный гвоздь в пробирках с различными растворами.

Методы исследования :

· изучение литературы;

· наблюдения;

· анализ полученных данных;

· обобщение.

Я выдвигаю гипотезу: железо разрушается, то есть ржавеет, в любых растворах.

Чтобы провести данное исследование, мы с учителем Людмилой Сергеевной, изучили специальную литературу (авторы указаны в списке литературы). При участии моей семьи я ставил опыты, наблюдал, анализировал и делал выводы.

ОСНОВНОЕ СОДЕРЖАНИЕ

Теоретическая часть

Что такое ржавчина

Первоначально я прочитал в толковом словаре Ожегова что такое ржавчина?

РЖА́ВЧИНА, - ы, ж.

1. Красно-бурый налёт на железе, образующийся вследствие окисления и ведущий к разрушению металла, а также след на чём-н. от такого налёта. В душе появилась какая-то р. (перен.: что-то разъедающее, мучащее).

2. Бурая плёнка на болотной воде.

Jpg" width="252" height="237">

Ржавчина возникает при взаимодействии атмосферы с железом. Процесс её образования называется ржавлением или коррозией. Корро́зия - это самопроизвольное разрушение металлов в результате взаимодействия с окружающей средой. Процесс ржавления железа начинается только при наличии в воздухе влаги. При попадании на поверхность изделия из железа капли воды, спустя некоторое время, можно заметить изменение её цвета. Капля становится мутной и постепенно окрашивается в бурый цвет. Это свидетельствует о появлении, в месте контакта воды с поверхностью, продуктов коррозии железа.

Роль металлов в жизнедеятельности человека

В повседневной жизни металлы применяются повсюду. Мы живем в мире металлов. Дома, на улице, в автобусе – всюду нас окружают металлические предметы. Без них мы просто не мыслим свою жизнь.

Железо химический элемент, серебристо – белый металл. В чистом виде практически не применяется из-за своей небольшой прочности. Как правило, используют сплавы на основе железа – сталь и чугун.

Сталь – это самый важный вид железных сплавов. От чистого железа его отличает содержание углерода, меньше 2%, но именно эта незначительная добавка придает сплаву твердость, которой нет у железа. От того, сколько в стране выплавляется стали в расчёте на душу населения, в огромной степени зависит технический и экономический уровень развития государства.

Алюминий используется в самолетостроении, потому что он очень прочный и легкий. В отличие от железа алюминий не боится влаги и не ржавеет, поэтому изделия из него не нуждаются в защитных покрытиях.

Цинк служит добавкой к меди, но часто его применяют и в чистом виде. У цинка хорошие литейные качества, поэтому из него отливают детали для различных машин. Обычно мы замечаем этот голубовато – белый металл с характерным пятнистым узором на новых водосточных трубах и металлических ведрах. Все эти изделия изготовлены из так называемого кровельного железа - мягкой листовой стали, покрытой тонким слоем цинка. Он предохраняет основной металл от ржавчины. Такое железо называется оцинкованным.

Медь очень пластична и она лучше других металлов (за исключением драгоценного серебра) проводит электрический ток. Эти качества позволяют использовать её в электрических проводах. Здесь она считается металлом номер один.

Серебро . Древние литейщики, кузнецы и ювелиры ценили этот металл за мягкость и податливость в обработке. Со времен Древней Греции и вплоть до начала нынешнего века большая часть добываемого серебра шла на чеканку монет, а остальная на изготовление ювелирных изделий, столовых приборов и посуды. Сегодня серебро ценится ещё за то, что оно лучше любого металла проводит электрический ток. Поэтому его широко применяют в электротехнике . Немало серебра идет на изготовление аккумуляторов, но ещё больше - на производство фото - и киноматериалов. Есть у металла ещё одно достоинство: оно убивает болезнетворные микробы. Поэтому на его основе готовят лекарственные препараты, которыми промывают гнойные раны, для заживления небольших ран к телу прикладывают бактерицидную бумагу, пропитанную соединениями серебра. Так же серебро применяют на зеркальных фабриках.

Больше всего от коррозии страдают сплавы на основе железа. «Ржа ест железо»- поговорка старая, но точная. Около 10% добытого металла теряется безвозвратно. За коррозией наступает эрозия - разрушение металлических изделий. После чего металл уже не пригоден. И все-таки 2/3 металлов возвращается в производство после переплавки в мартеновских печах. Вот почему важно собирать металлолом.

Я решил провести опыты с железными гвоздями, помещая их в различные среды.

Практическая часть

ОПЫТ 1. «В какой воде металлы ржавеют быстрее всего»

Цель опыта : выяснить, в какой воде железо ржавеет быстрее всего

Я взял воду из 4-х источников (из скважины, из речки, дистиллированную, снег) и положил в неё одинаковые железные гвозди. Банки с водой находились в одинаковых условиях. Через 2 дня вода пожелтела, через неделю на гвоздях появилась ржавчина, через месяц слой ржавчины значительно вырос. Ржавчина образовалась на всех гвоздях независимо от того в воде из какого источника они находились.

Вода из скважины

Вода из речки

Вода дистиллированная

Положили гвозди в воду

Вода пожелтела

Вода пожелтела

Вода пожелтела

Вода пожелтела

Появилась ржавчина на гвозде

Появилась ржавчина на гвозде

Появилась ржавчина на гвозде

Появилась ржавчина на гвозде

Слой ржавчины растёт

Слой ржавчины растёт

Слой ржавчины растёт

Слой ржавчины растёт

Вывод : ржавчина образуется на железе в любой воде.

ОПЫТ 2. «В какой среде металлы ржавеют быстрее всего»

Цель опыта : выяснить, в какой среде железо ржавеет быстрее всего

Я решил выяснить, в какой среде железо ржавеет быстрее всего. Для этого взял 4 банки воды из скважины. В первую добавил соль, во вторую – сахар, в третью – соду, в четвертую – уксус. В каждую, банку опустил железный гвоздь.

Через 2 дня :

· в воде с солью появился небольшой желтый осадок, сам раствор остался прозрачным;

· раствор с сахаром пожелтел;

· раствор с уксусом прозрачный на стенках банки пузырьки.

Через месяц :

· в воде с солью появился слой ржавчины и кристаллы соли на гвозде;

· раствор с сахаром посветлел, ржавчины нет;

· в воде с содой изменений не произошло;

· раствор уксуса темно-коричневый, на дне банки частички гвоздя.

Вода с сахаром

Вода с солью

Вода с содой

Вода с уксусом

Положили гвозди в разные растворы

Раствор пожелтел

Небольшой желтый осадок, раствор прозрачный

Изменений нет

Раствор прозрачный, на стенках банки пузырьки

Раствор посветлел, ржавчины нет

Появился слой ржавчины и кристаллы соли на гвозде

Изменений нет

Раствор темно-коричневый, на дне банки частички гвоздя

Вывод : ржавчина не образуется в щелочной среде; в кислой среде железо разрушается.

ОПЫТ 3. «Как различные металлы противостоят коррозии»

Цель опыта : выяснить, образуется ли ржавчина на других металлах

Мне захотелось выяснить, образуется ли ржавчина на других металлах. Я взял 4 разных металла (медь, алюминий, цинк, железо) и опустил их в воду. Отдельно положил в воду окрашенный железный гвоздь. Уже через 2 дня вода с железом стала ржавой, а на остальных металлах ржавчина не образовалась даже через месяц. Вода с окрашенным гвоздем не заржавела.

Вывод : ржавчина образуется только при взаимодействии воды с железом.

ЗАКЛЮЧЕНИЕ

В ходе своего исследования я попытался выяснить, почему ржавчина образуется на железе, в каких растворах образуется ржавчина и выяснить методы защиты от ржавчины. На примере исследования видно, что вода является благоприятной средой для возникновения ржавчины, не зависимо от того из какого источника она берется. Щелочная среда благоприятна для предохранения железа от ржавчины. В кислой среде железо разрушается более быстро. Железо можно сохранить, если не допустить его соприкосновения с водой, для этого необходимо проводить окрашивание.

СПИСОК ИСПОЛЗУЕМОЙ ЛИТЕРАТУРЫ

2. Большая энциклопедия «Почемучек».- М.: «РОСМЭН», 2006

3. Я познаю мир. АСТ», 1999

Словосочетания «коррозия металла» заключает в себе намного больше, чем название популярной рок-группы. Коррозия безвозвратно разрушает металл , превращая его в труху: из всего, произведенного в мире железа, 10% полностью разрушится в этот же год. Ситуация с российским металлом выглядит примерно так — весь металл, выплавленный за год в каждой шестой доменной печи нашей страны, становится ржавой трухой еще до конца года.

Выражение «обходится в копеечку» в отношении коррозии металла более чем верно — ежегодный ущерб, приносимый коррозией, составляет не менее 4% годового дохода любой развитой страны, а в России сумма ущерба исчисляется десятизначной цифрой. Так что же вызывает коррозийные процессы металлов и как с ними бороться?

Что такое коррозия металлов

Разрушение металлов в результате электрохимического (растворение во влагосодержащей воздушной или водной среде — электролите) или химического (образование соединений металлов с химическими агентами высокой агрессии) взаимодействия с внешней средой. Коррозийный процесс в металлах может развиться лишь в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия).

Металл под воздействием кислорода и воды становится рыхлым светло-коричневым порошком, больше известным как ржавчина (Fе 2 O 3 ·H 2 О).

Химическая коррозия

Этот процесс происходит в средах, не являющихся проводниками электрического тока (сухие газы, органические жидкости — нефтепродукты, спирты и др.), причем интенсивность коррозии возрастает с повышением температуры — в результате на поверхности металлов образуется оксидная пленка.

Химической коррозии подвержены абсолютно все металлы — и черные, и цветные. Активные цветные металлы (например — алюминий) под воздействием коррозии покрываются оксидной пленкой, препятствующей глубокому окислению и защищающей металл. А такой мало активный металл, как медь, под воздействием влаги воздуха приобретает зеленоватый налет — патину. Причем оксидная пленка защищает металл от коррозии не во всех случаях — только если кристаллохимическая структура образовавшейся пленки сообразна строению металла, в противном случае — пленка ничем не поможет.

Сплавы подвержены другому типу коррозии: некоторые элементы сплавов не окисляются, а восстанавливаются (например, в сочетании высокой температуры и давления в сталях происходит восстановление водородом карбидов), при этом сплавы полностью утрачивают необходимые характеристики.

Электрохимическая коррозия

Процесс электрохимической коррозии не нуждается в обязательном погружении металла в электролит — достаточно тонкой электролитической пленки на его поверхности (часто электролитические растворы пропитывают среду, окружающую металл (бетон, почву и т.д.)). Наиболее распространенной причиной электрохимической коррозии является повсеместное применение бытовой и технической солей (хлориды натрия и калия) для устранения льда и снега на дорогах в зимний период — особенно страдают автомашины и подземные коммуникации (по статистике, ежегодные потери в США от использования солей в зимний период составляют 2,5 млрд. долларов).

Происходит следующее: металлы (сплавы) утрачивают часть атомов (они переходят в электролитический раствор в виде ионов), электроны, замещающие утраченные атомы, заряжают металл отрицательным зарядом, в то время как электролит имеет положительный заряд. Образуется гальваническая пара: металл разрушается, постепенно все его частицы становятся частью раствора. Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла. В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге). Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Другие причины коррозии металла

Развитию коррозийных процессов способствуют радиация, продукты жизнедеятельности микроорганизмов и бактерий. Коррозия, вызываемая морскими микроорганизмами, наносит ущерб днищам морских судов, а коррозийные процессы, вызванные бактериями, даже имеют собственное название — биокоррозия.

Совокупность воздействия механических напряжений и внешней среды многократно ускоряет коррозию металлов — снижается их термоустойчивость, повреждаются поверхностные оксидные пленки, а в тех местах, где появляются неоднородности и трещины, активируется электрохимическая коррозия.

Меры защиты металлов от коррозии

Неизбежными последствиями технического прогресса является загрязнение нашей среды обитания — процесс, ускоряющий коррозию металлов, поскольку внешняя окружающая среда проявляет к ним все большую агрессию. Каких-либо способов полностью исключить коррозийное разрушение металлов не существует, все, что можно сделать, это максимально замедлить этот процесс.

Для минимизации разрушения металлов можно сделать следующее: снизить агрессию среды, окружающей металлическое изделие; повысить устойчивость металла к коррозии; исключить взаимодействие между металлом и веществами из внешней среды, проявляющими агрессию.

Человечеством за тысячи лет испробованы многие способы защиты металлических изделий от химической коррозии, некоторые из них применяются по сей день: покрытие жиром или маслом, другими металлами, коррозирующими в меньшей степени (самый древний метод, которому уже более 2 тыс. лет — лужение (покрытие оловом)).

Антикоррозийная защита неметаллическими покрытиями

Неметаллические покрытия — краски (алкидные, масляные и эмали), лаки (синтетические, битумные и дегтевые) и полимеры образуют защитную пленку на поверхности металлов, исключающую (при своей целостности) контакт с внешней средой и влагой.

Применение красок и лаков выгодно тем, что наносить эти защитные покрытия можно непосредственно на монтажной и строительной площадке. Методы нанесения лакокрасочных материалов просты и поддаются механизации, восстановить поврежденные покрытия можно «на месте» — во время эксплуатации, эти материалы имеют сравнительно низкую стоимость и их расход на единицу площади невелик. Однако их эффективность зависит от соблюдения нескольких условий: соответствие климатическим условиям, в которых будет эксплуатироваться металлическая конструкция; необходимость применения исключительно качественных лакокрасочных материалов ; неукоснительное следование технологии нанесения на металлические поверхности. Лакокрасочные материалы лучше всего наносить несколькими слоями — их количество обеспечит лучшую защиту от атмосферного воздействия на металлическую поверхность.

В роли защитных покрытий от коррозии могут выступать полимеры — эпоксидные смолы и полистирол, поливинилхлорид и полиэтилен. В строительных работах закладные детали из железобетона покрываются обмазками из смеси цемента и перхлорвинила, цемента и полистирола.

Защита железа от коррозии покрытиями из других металлов

Существует два типа металлических покрытий-ингибиторов — протекторные (покрытия цинком, алюминием и кадмием) и коррозионностойкие (покрытия серебром, медью, никелем, хромом и свинцом). Ингибиторы наносятся химическим способом: первая группа металлов имеет большую электроотрицательность по отношению к железу, вторая — большую электроположительность. Наибольшее распространение в нашем обиходе получили металлические покрытия железа оловом (белая жесть, из нее производят консервные банки) и цинком (оцинкованное железо — кровельное покрытие), получаемые путем протягивания листового железа через расплав одного из этих металлов.

Часто цинкованию подвергаются чугунная и стальная арматура, а также водопроводные трубы — эта операция существенно повышает их стойкость к коррозии, но только в холодной воде (при проводе горячей воды оцинкованные трубы изнашиваются быстрее неоцинкованных). Несмотря на эффективность цинкования, оно не дает идеальной защиты — цинковое покрытие часто содержит трещины, для устранения которых требуется предварительное никелерование металлических поверхностей (покрытие никелем). Цинковые покрытия не позволяют наносить на них лакокрасочные материалы — нет устойчивого покрытия.

Лучшее решение для антикоррозийной защиты — алюминиевое покрытие. Этот металл имеет меньший удельный вес, а значит — меньше расходуется, алюминированные поверхности можно окрашивать и слой лакокрасочного покрытия будет устойчив. Кроме того, алюминиевое покрытие по сравнению с оцинкованным покрытием обладает большей стойкостью в агрессивных средах. Алюминирование слабо распространено из-за сложности нанесения этого покрытия на металлический лист — алюминий в расплавленном состоянии проявляет высокую агрессию к другим металлам (по этой причине расплав алюминия нельзя содержать в стальной ванне). Возможно, эта проблема будет полностью решена в самое ближайшее время — оригинальный способ выполнения алюминирования найден российскими учеными. Суть разработки заключается в том, чтобы не погружать стальной лист в расплав алюминия, а поднять жидкий алюминий к стальному листу.

Повышение коррозийной стойкости путем добавления в стальные сплавы легирующих добавок

Введение в стальной сплав хрома, титана, марганца, никеля и меди позволяет получить легированную сталь с высокими антикоррозийными свойствами. Особенную стойкость стальному сплаву придает большая доля хрома, благодаря которому на поверхности конструкций образуется оксидная пленка большой плотности. Введение в состав низколегированных и углеродистых сталей меди (от 0,2% до 0,5%) позволяет повысить их коррозийную устойчивость в 1,5-2 раза. Легирующие добавки вводятся в состав стали с соблюдением правила Таммана: высокая коррозийная устойчивость достигается, когда на восемь атомов железа приходится один атом легирующего металла.

Меры противодействия электрохимической коррозии

Для ее снижения необходимо понизить коррозийную активность среды посредством введения неметаллических ингибиторов и уменьшить количество компонентов, способных начать электрохимическую реакцию. Таким способом будет понижение кислотности почв и водных растворов, контактирующих с металлами. Для снижения коррозии железа (его сплавов), а также латуни, меди, свинца и цинка из водных растворов необходимо удалить диоксид углерода и кислород. В электроэнергетической отрасли проводится удаление из воды хлоридов, способных повлиять на локальную коррозию. С помощью известкования почвы можно снизить ее кислотность.

Защита от блуждающих токов

Снизить электрокоррозию подземных коммуникаций и заглубленных металлоконструкций возможно при соблюдении нескольких правил:

  • участок конструкции, служащий источником блуждающего тока, необходимо соединить металлическим проводником с рельсом трамвайной дороги;
  • трассы теплосетей должны размещаться на максимальном удалении от рельсовых дорог, по которым передвигается электротранспорт, свести к минимуму число их пересечений;
  • применение электроизоляционных трубных опор для повышения переходного сопротивления между грунтом и трубопроводами;
  • на вводах к объектам (потенциальным источникам блуждающих токов) необходима установка изолирующих фланцев;
  • на фланцевой арматуре и сальниковых компенсаторах устанавливать токопроводящие продольные перемычки — для наращивания продольной электропроводимости на защищаемом отрезке трубопроводов;
  • чтобы выровнять потенциалы трубопроводов, расположенных параллельно, необходимо установить поперечные электроперемычки на смежных участках.

Защита металлических объектов, снабженных изоляцией, а также стальных конструкций небольшого размера выполняется с помощью протектора, выполняющего функцию анода. Материалом для протектора служит один из активных металлов (цинк, магний, алюминий и их сплавы) — он принимает на себя большую часть электрохимической коррозии, разрушаясь и сохраняя главную конструкцию. Один анод из магния, к примеру, обеспечивает защиту 8 км трубопровода.

Абдюжанов Рустам, специально для рмнт.ру

gastroguru © 2017