Схема обработки на фрезерном станке. Инструмент и приспособления для фрезерных станков

Технологический процесс фрезерной обработки должен обеспечить возможность обработать на данном станке при заданных условиях работы наибольшее количество деталей высокого качества при возможно лучшем использовании оборудования и инструмента, а также с наименьшими затратами.
Технологический процесс должен быть построен в наиболее целесообразной последовательности операций и переходов с использованием наиболее рациональных методов фрезерования.
Последовательность обработки зависит от многих факторов: характера фрезерных операций, размеров и формы деталей, технических условий на взаимное расположение отдельных поверхностей, наличного парка оборудования и т. д. Однако в большинстве случаев последовательность обработки зависит от выбора установочных баз.

Выбор установочных баз

Порядок обработки детали зависит в первую очередь от того, какие поверхности выбираются в качестве установочных баз в процессе обработки. Поэтому установочные базы должны намечаться заранее, до начала обработки.
Различают следующие основные случаи выбора установочных баз:
1. Подлежащая обработке заготовка не имеет предварительно обработанных поверхностей. Тогда базировку приходится вести по черной поверхности заготовки (черновая база). При этом на первой установке нужно обработать ту черную поверхность, которая намечена в качестве установочной базы для последующей обработки других поверхностей, т. е. подготовить чистовую установочную базу для следующих установок.
Так, мы поступали при обработке прямоугольного бруска (см. рис. 101). За базу при первой установке была принята черная поверхность заготовки. Это позволило обработать широкую плоскость 1 , которая в дальнейшем служила чистовой установочной базой для последующих установок.
2. Подлежащая обработке на данной операции заготовка имеет плоскости, обработанные на предыдущих операциях. В этом случае базировка производится по предварительно обработанным поверхностям.
Так, для фрезерования призмы (см. рис. 147) заготовкой является прямоугольный брусок, профрезерованный начисто по всем граням. В качестве базы для обработки этого бруска могут быть приняты две любые грани. При фрезеровании пазов а и б за базу принимается грань 1 (рис. 344). При фрезеровании пазов в и г грань 1 уже не может служить базой, поэтому принимается в качестве новой базы грань 2 (рис 345).




3. Подлежащая обработке на данной операции заготовка имеет наружные или внутренние поверхности вращения, обработанные на предыдущих операциях. В этом случае базировку производят по этим поверхностям.
Так, при обработке контурного шаблона (см. рис. 161) в качестве установочной базы было принято центральное отверстие диаметром 30 мм ; при фрезеровании квадрата (см. рис. 210) в качестве установочной базы были приняты центровые отверстия (центры); при фрезеровании граней гайки (см. рис. 213) установочной базой служило отверстие диаметром 11,7 мм ; при фрезеровании торцовых пазов в валике (рис. 215) установочной базой служила наружная обточенная поверхность диаметром 34 мм и т. д.

Выбор методов фрезерования

В зависимости от количества и порядка закрепления обрабатываемых заготовок фрезерование можно производить по следующим методам.
Фрезерование по одной заготовке (рис. 346, а) применяется главным образом в единичном производстве или при обработке заготовок крупных размеров, когда на столе станка или в приспособлении нельзя закрепить больше одной заготовки.


При последовательном методе фрезерования одна фреза или набор фрез обрабатывает заготовки, последовательно закрепленные в тисках или многоместных приспособлениях.
Последовательное фрезерование можно производить враздвижку , когда заготовки закрепляются последовательно на некотором расстоянии друг от друга, как показано на рис. 346, б. Для уменьшения потерь на холостой пробег фрезы современные фрезерные станки имеют возможность настройки перемещений стола по принципу чередующейся подачи (см. рис. 291).
Более производительным способом последовательного фрезерования является фрезерование заготовок, установленных пакетом (см. рис. 214, б). При этом способе фрезерования потери на холостой пробег фрезы в промежутках между заготовками исключены, так как они прилегают друг к другу. Поэтому, если условия обработки и конфигурация заготовок позволяют, то всегда выгодно закреплять заготовки пакетом.
При параллельном методе фрезерования две или несколько заготовок, закрепленные в тисках или многоместном приспособлении, обрабатываются одновременно одной фрезой или набором фрез (рис. 346, в).
При параллельном методе фрезерования машинное время сокращается во столько раз, сколько установлено заготовок в ряд. Параллельный метод применяется главным образом в условиях изготовления больших партий малогабаритных заготовок. На рис. 347 показана установка четырех винтов для параллельного фрезерования их головок четырьмя парами дисковых трехсторонних фрез.


Параллельно - последовательным методом фрезерования называют сочетание параллельного и последовательного методов фрезерования. При этом методе можно добиться наибольшей производительности, что часто используют фрезеровщики-новаторы производства.
На рис. 348 показано производительное приспособление для фрезерования шлицев корончатых гаек. Оно состоит из основания 1 и двух круглых плит 2 и 3 .

Основание 1 закрепляют пазовыми болтами на столе горизонтально-фрезерного станка. На основание устанавливают и закрепляют четырьмя откидными болтами нижнюю 2 и верхнюю 3 плиты в сборе. Верхняя плита 3 соединена с нижней 2 семью болтами 4 с быстросъемными шайбами 7 .
В нижней плите имеется 54 нарезанных отверстия, в которые ввинчены зажимы 8 с внутренним шестигранником. На верхнем конце зажимы имеют круглый диск, свободно входящий в отверстие в верхней плите и подпирающий заготовки гаек. Таких отверстий в верхней плите тоже 54. В них закладывают заготовки гаек при опрокинутом положении верхней плиты. На нее накладывают сверху нижнюю плиту, фиксируя ее двумя штифтами, и затягивают семь болтов 4 и все 54 зажима. Затем переворачивают комплект плит с заложенными в них 54 заготовками и устанавливают его на основание, закрепляя четырьмя откидными болтами.
На верхней плоскости верхней плиты 3 имеется система канавок, пересекающихся между собой под углом 60°. Ширина канавок (3,5 мм ) соответствует ширине шлица в гайке.
Фрезерование комплекта заложенных в приспособление 54 гаек производится набором девяти дисковых фрез, установленных на равных расстояниях на оправке. После первого прохода обе верхние плиты поворачивают на 60°, производят второй проход и таким же образом третий проход.
При двух комплектах плит заполнение заготовками второго комплекта производят в процессе фрезерования шлицев в гайках первого комплекта плит, таким образом получается экономия вспомогательного времени.
При разработке технологического процесса фрезерной обработки партии одинаковых деталей необходимо стремиться к применению параллельно-последовательных методов обработки.

Оформление технологического процесса

Операция технологического процесса обработки детали заносятся в последовательном порядке в карту технологического процесса. Карта технологического процесса отличается от операционной карты тем, что по ней устанавливается процесс обработки детали по всем операциям.
В карте технологического процесса порядковые номера операций обозначаются римскими цифрами (I, II, III, IV и т. д.). Порядковые номера установок обозначаются русскими заглавными буквами (А, Б, В, Г и т. д.). Порядковые номера переходов обозначаются арабскими цифрами (1, 2, 3, 4 и т. д.).
Наименования установок и переходов записываются в форме приказа. Это подчеркивает строгую обязательность выполнения технологического процесса.
В графе «Наименование установок» указываются характер и способы закрепления заготовки, а также поверхности, которыми она касается установочного элемента, приспособления или поверхности стола. Например, в технологической карте установка, изображенная на рис. 349, формулируется так: «Установить заготовку в тиски фрезерованной поверхностью 1 к неподвижной губке и закрепить».

Идея разработки типовых технологических процессов механической обработки для деталей одного класса) принадлежит проф. А. П. Соколовскому.

Работа по типизации технологических процессов предусматривает предварительную классификацию деталей и приведение теоретически бесконечного числа комбинаций форм деталей и размеров к минимальному количеству типов, для которых можно разработать типовые технологические процессы обработки в нескольких вариантах с дальнейшим использованием применительно к конкретным деталям и условиям работы данного завода.

При классификации деталей машин проф. А. П. Соколовский предлагает все многообразие деталей разделить на классы, которые в свою очередь подразделяют на подклассы, группы и подгруппы. Классом называется совокупность деталей, характеризуемых общностью технологических задач, возникающих при обработке деталей опредеделенной конфигурации.

По классификации А. П. Соколовского предусмотрено 15 классов (валы, втулки, диски, эксцентриковые детали, крестовины, рычаги, плиты, шпонки, стойки, угольники, бабки, зубчатые колеса, фасонные кулачки, ходовые винты и червяки, мелкие крепежные детали). При этом указывается, к какому классу целесообразно добавлять и другие виды деталей, характерные для отдельных отраслей промышленности (например, шариковые или роликовые подшипники, лопатки турбин ит. д.) Подгруппы в свою очередь делятся на типы деталей. К одному типу относятся детали, для которых можно разработать общую карту типового технологического процесса, но при этом допускаются некоторые отклонения в порядке обработки, а также исключение или добавление некоторых переходов или даже операций. Как отмечалось выше, на станках фрезерной группы можно обработать почти любые поверхности.

Детали, обрабатываемые на фрезерных станках. можно классифицировать по следующим основным признакам:

  1. конфигурация обрабатываемых деталей:
  2. тип инструмента, с помощью которого целесообразно производить обработку поверхностей деталей;
  3. размеры обрабатываемых поверхностей деталей;
  4. точность (размеров и формы) обрабатываемых поверхностей.

По первому признаку можно создать класс, состоящий из деталей с наиболее распространенными сочетаниями поверхностей (открытые плоскости, многогранники, плоскости с пазами, шпоночные пазы, сочетания вертикальных или горизонтальных плоскостей с наклонными, поверхности с винтовыми канавками, типовые фасонные поверхности и др.). По второму признаку (тип инструмента) можно образовать классы деталей, которые экономически выгодно обрабатывать различными типами фрез или набором фрез: торцовыми твердосплавными, цилиндрическими, торцовыми, дисковыми, концевыми, угловыми и др. - в зависимости от размера партии или размеров обрабатываемых поверхностей деталей в условиях фрезерования единичной детали или группы одновременно обрабатываемых деталей.

При этом в обоих случаях должны быть учтены размеры обрабатываемых поверхностей (масштабный фактор), требуемая точность размеров и класс шероховатости обработанной поверхности.

К каждому классу типовых деталей предъявляют специфические технологические требования.

Так, например, при обработке деталей, ограниченных плоскостями, необходимо выполнить в заданных пределах следующее параметры: плоскостность, точность размеров, точность расположения, класс шероховатости обработанной поверхности, качество поверхностного слоя и др. Для пазов и уступов основные технологические требования - обеспечение точности размеров по ширине и глубине, симметричности расположения паза (или уступов) и др.

Основным требованием при обработке деталей, ограниченных фасонными поверхностями, является обеспечение заданного профиля, расположения, размеров и класса шероховатости поверхностей.

Базированием называется придание детали определенного положения относительно режущего инструмента при ее механической обработке на станках. Оно осуществляется путем доведения базовых поверхностей детали до соприкосновения с установочными элементами приспособления. При этом, если установочная и исходная базы детали не совпадают, неизбежно возникает погрешность базирования, величина которой определяется предельными отклонениями исходной базы относительно режущего инструмента. О погрешности базирования можно говорить только при обработке способом автоматического получения заданного размера, когда для всей партии обрабатываемых деталей настройка режущего инструмента постоянна. И, наоборот, при обработке способом пробных проходов при любом расположении установочной и исходной баз погрешность базирования отсутствует, так как для каждой обрабатываемой детали расположение режущего инструмента корректируется по исходной базе.

Погрешность выдерживаемого размера обрабатываемой детали DИ можно представить как сумму погрешности базирования - D баз и всех прочих погрешностей, связанных с процессом обработки - w.

Откуда, допускаемое значение погрешностей базирования

(3.2)

Следовательно, обеспечение требуемой точности размера возможно при соблюдении условия

где - фактическое значение погрешности базирования.

При обратном соотношении этих величин, во избежание брака, необходимо уменьшить значение , для чего необходимо:

Или изменить схему базирования;

Или ужесточить допуски на базисные размеры;

Или расширить поле допуска выдерживаемого размера (если это не нарушает правильность функционирования детали).

Величина рассчитывается аналитически и представляется виде полного дифференциала уравнения размерной цепи, в котором приращение вектора, связывающего исходную базу детали с установочной базой приспособления, выражена через соответствующего приращения базисных размеров.

Объясним суть метода на примере.

Предположим у детали цилиндрической формы требуется профрезеровать уступ, выдержав размер И (см. рис.3.1).

1. При установке на плоскости (схематически показанной на рис. 3.2), погрешность базирования будет равна нулю, т.к. исходная база у всех заготовок занимает одно и то же положение и совпадает с установочной.


Рис. 3.2 Рис. 3.3

Исходя из равенства И=Н (с учетом, что Н = const, DН = 0), можем написать, что

(3.5)

2. Оставив все прочие условия постоянными, вместо приспособления, показанного на рис 3.2, примем для установки деталей призму, схематически показанную на рис 3.3.

При данной установке, где исходная и установочная базы не совпадают, будем иметь погрешность базирования, что зависит от погрешности заданного размера DD . При этом исходный размер выражается в соответствии с рис 3.3:

. (3.6)

Подставляя значение О / К (что определяется из DОО / m ) в выражении (3.6), получим

. (3.7)

Откуда погрешность базирования (с учетом, что DН= 0) будет равна

(3.8)

Итак, при этом, погрешность базирования имеет место и обратно пропорциональна величине погрешности заданного размера - DD=d D .

Работа выполняется на вертикально фрезерном станке.

Режущий инструмент – фреза концевая с цилиндрическим хвостовиком, диаметром D =25мм.

Заготовка – валики, в количестве 5 штук с диаметром Æ20 -0,36 мм, длиной L= 100мм, (желательно брать партию заготовок с большим полем рассеивания).

Работу следует выполнять в следующей последовательности:

1) Ознакомиться с рабочим чертежом заготовки (рис 3.1.) и схемами установки (рис 3.2 и 3.3)

2) Установить заготовку по первой схеме и по заданной настройке, обработать партию деталей с одного конца. Величина исходного размера и режимы резания задаются руководителем занятий.

3) Установить детали по второй схеме см. рис. 3.3) и профрезеровать уступ с другой стороны. Во избежание путаницы, на торцевых поверхностях наносить знаки кернером.

В промышленности широко применяются одношпиндельные фрезерные станки - горизонтальные, вертикальные и универсальнофрезерные горизонтальные. Имеются, кроме того, специализированные и специальные фрезерные станки. К специализированным фрезерным станкам относятся многошпиндельные продольно-фрезерные с расположением шпинделей в различных плоскостях; торцово-фрезерные для обработки плоскостей, карусельно-фрезерные с вращающимися столами; барабанно-фрезерные с вращающимся барабаном и копировально-фрезерные для обработки фасонных поверхностей. К специальным станкам относятся резьбофрезерные, шпоночно-фрезерные, агрегатно-фрезерные и реечные.

В одношпиндельном горизонтально-фрезерном станке шпиндель расположен горизонтально; в вертикально-фрезерном станке - вертикально; в остальном устройство станка принципиально не отличается от горизонтально-фрезерного. Вертикально-фрезерные станки снабжают как прямоугольными, так и круглыми столами.

Универсально-фрезерные станки отличаются от описанных тем, что они имеют поворотный стол, который позволяет выполнять операции по фрезерованию винтовых канавок (например, у спиральных сверл) и зубчатых колес с винтовыми зубьями.

Продольно-фрезерный станок является характерным для группы специализированных фрезерных станков. Такие станки изготовляют с одним или несколькими вертикальными и горизонтальными шпинделями; в последнем случае заготовку можно обрабатывать одновременно с нескольких сторон. На рис. 175, а показан общий вид четырехшпиндельного продольно-фрезерного станка. По направляющим станины 1 может перемещаться стол 2, на котором закрепляют заготовки. Обработку выполняют фрезами, установленными в шпинделях, находящихся в шпиндельных бабках 3, 5, 6 и 7. Так как стол неподвижен, то чтобы получить требуемые размеры при обработке, инструмент устанавливают выдвижением шпинделей вдоль их оси и перемещением шпиндельных бабок 5 и 6 по направляющим поперечины 4 перпендикулярно осям шпинделей этих бабок.

Барабанно-фрезерные станки относятся к группе непрерывно действующих станков. Они имеют преимущественное распространение в крупносерийном и массовом производстве. На таких станках может производиться одновременная обработка двух плоскостей заготовок. На рис. 175, б приведена схема станка. На валу 5, проходящем через раму станины, смонтирован барабан 3, имеющий форму правильного четырехугольника (а иногда пяти- и шестиугольника), на гранях которого установлены приспособления 6 для закрепления детали. Вал вместе с барабаном 3 вращается от отдельного привода 4. Частота вращения барабана может регулироваться коробкой подач, помещенной в корпусе станины.

На двух стойках 1 размещены фрезерные головки 2, которые представляют собой самостоятельные узлы с индивидуальными приводами. Фрезерные головки могут перемещаться на стойках и закрепляться в любом положении согласно настройке станка. Для регулирования глубины фрезерования шпиндели кроме вращательного движения имеют поступательное движение по направлению оси вращения. Производительность станка зависит от количества одновременно обрабатываемых заготовок и частоты вращения барабана.

На фрезерных станках плоские поверхности можно обрабатывать цилиндрическими фрезами при движении стола станка с закрепленной заготовкой навстречу направлению движения зубьев, т. е. методом встречного фрезерования (рис. 176, а) или в том же направлении методом попутного фрезерования (рис. 176, б). В обоих случаях стружка, снимаемая каждым зубом фрезы, имеет форму запятой, но в первом случае толщина стружки постепенно увеличивается в процессе резания, а во втором уменьшается.

Преимущество встречного фрезерования заключается в плавном увеличении нагрузки на зуб и во врезании зубьев в металл под коркой. Недостатком этого метода является стремление фрезы оторвать заготовку от поверхности стола.

Точность фрезерования зависит от типа станка, инструмента, режимов резания и других факторов. При фрезеровании может быть достигнута точность по 8…11-му квалитетам, а при скоростном и тонком фрезеровании - до 7-го квалитета. Шероховатость поверхности при чистовом фрезеровании Rа=6,3…1,6 мкм.

На рис. 177 приведены различные виды обработки на фрезерных станках: α - обработка плоскости цилиндрической фрезой; б - обработка плоскости торцевой фрезой; в, г - обработка вертикальной плоскости и паза дисковой трехсторонней фрезой; д - обработка паза концевой фрезой; е - обработка боковых плоскостей двумя торцевыми фрезами; ж - обработка сложного профиля набором фрез.

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Методические указания

по курсу «Технология конструкционных материалов»

для студентов механических специальностей

Одобрено

редакционно-издательским советом

Саратовского государственного

тех­нического университета

Саратов 2010

Цель работы: изучить устройство горизонтально-фрезерного станка 6П80Г, конструкцию фрез и методы обработки на фрезерных станках.

1. Основные понятия

1.1. Общая характеристика станка модели 6П80Г

Горизонтально-фрезерный станок предназначен для фрезерования поверхностей различных деталей из стали, чугуна и цветных металлов сравнительно небольших размеров в условиях индивидуального и серийного производства.

Техническая характеристика станка:
Рабочая поверхность стола, мм ……………………. 200х800

Число скоростей вращения шпинделя………………. 12

Пределы чисел оборотов шпинделя в минуту……… 50-2240

Число скоростей подач стола ……………………….. 16

Пределы скоростей подач стола, мм/мин.

продольных (Sпр)……...…………………….. 22,4-1000

поперечных (Sп)………………………………

вертикальных (Sв)……………………………

Скорость быстрого перемещения стола, мм/мин

продольного………………………………….. 2400

поперечного………………………………….. 1710

вертикального……………………………….. 855

Мощность главного электродвигателя, кВт………… 2,8

Основные узлы станка (рис. 1):

А – станина с коробкой скоростей и шпиндельным узлом;

Б –хобот с подвеской; В – дополнительная связь консоли с хоботом; Г – поворотная часть стола; Д – поперечные салазки;

Е – стол; Ж – консоль с коробкой подач; З – основание станка.

Органы управления (рис. 1):

1 – рукоятка для переключения коробки скоростей; 2 – рукоятка для переключения перебора шпинделя; 3 – рукоятка ручного продольного перемещения стола; 4 – рукоятка управления продольной подачи стола; 5 – рукоятка управления поперечной подачей стола; 6 – рукоятка управления вертикального подачей; 7 – рукоятка ручного вертикального перемещения консоли; 8 – маховичок для переключения коробки подач; 10 – рукоятка переключения перебора коробки подач.

Движения в станке:

Движение резания (главное движение) – вращение шпинделя с фрезой.

Движение подач – перемещение стола с обрабатываемой деталью в продольном, поперечном и вертикальном направлениях.

Вспомогательные движения – все указанные перемещения стола, выполняемые на быстром ходу.

https://pandia.ru/text/78/283/images/image002_45.gif" width="304" height="113 src="> а) б)

Рис. 2. Схемы фрезерования горизонтальных поверхностей

Фрезерование вертикальных поверхностей осуществляется на горизонтально-фрезерных и продольно-фрезерных станках торцевыми фрезерными головками (рис. 3, а), а на вертикально-фрезерных станках – боковыми зубьями концевой фрезы (рис. 3, б).

Рис. 4. Схемы фрезерования наклонных поверхностей

Фрезерование пазов: угловых (рис. 5, а), прямоугольных (рис. 5, б), Т-образных (рис. 5, в), типа ласточкин хвост (рис. 5, г), фасонных (рис. 5, д), шпоночных (рис. 5, е) производят на горизонтально - и вертикально-фрезерных станках.

Рис. 6. Схема фрезерования комбинированных поверхностей

Фрезерование фасонных поверхностей производят фасонными фрезами соответствующего профиля (рис.7).

Рис. 7. Схема фрезерования фасонных поверхностей

Фрезерование зубчатых колес производят модульными дисковыми фрезами (рис. 8, а) на горизонтальных, а также модульными пальцевыми фрезами (рис. 8, б) на вертикально - фрезерных станках.

https://pandia.ru/text/78/283/images/image010_11.gif" width="321" height="169"> а) б)

a a

Рис. 9. Конструкции зуба фрезы

Фрезы с остроконечным зубом являются наиболее простыми и служат для обработки плоских поверхностей. Задняя поверхность зуба очерчивается по прямой линии m . Задняя поверхность фрез с затылованным зубом очерчивается по архимедовой спирали. Затылованный зуб применяется у фасонных фрез.

- по направлению зуба : прямые, винтовые и разнонаправленные;

- по общей конструкции: цельные, насадные и сборные. Цельные фрезы изготавливают из инструментальных сталей. У сборных фрез зубья (ножи) выполняют из быстрорежущей стали или оснащают пластинками из твердых сплавов и закрепляют в корпусе фрезы пайкой или механически.

- по форме и назначению: цилиндрические, торцовые, концевые, шпоночные, дисковые, угловые, резьбовые, фасонные и другие.

- по способу крепления: концевые и насадные;

- по назначению: для обработки плоскостей, для обработки уступов, пазов и канавок, для изготовления резьб, для изготовления зубчатых колес.

1.5. Элементы цилиндрической фрезы с винтовыми зубьями

Цилиндрическая фреза представляет собой многозубый режущий инструмент в виде тела вращения, на образующей поверхности которого расположены режущие зубья. Каждый зуб фрезы состоит из (рис. 10):

Передней поверхности (1), по которой сходит стружка;

Спинки зуба (2), которая может быть прямолинейной (рис. 10, б), дуговой (рис. 10, в) или криволинейной (рис. 10, г);

Главного режущего лезвия (3), которое выполняет основную работу резания и может быть прямым, наклонным или винтовым;

Задней поверхности (4) шириной f =1-2мм;

Ленточки (5) шириной к = 0,05 - 0,1 мм (оставляется при заточке для более точного изготовления фрез по диаметру).

1.6. Геометрические параметры цилиндрической фрезы с винтовыми зубьями

Для рассмотрения геометрических параметров цилиндрической фрезы проводим главную секущую плоскость N-N (рис.10), плоскость перпендикулярную к главной режущей кромке в рассматриваемой точке. Профиль зуба и его геометрические параметры рассматривают в плоскости N-N.

Передний угол g - это угол между передней поверхностью зуба и плоскостью, проходящей по радиусу.

Задний угол a - образован задней поверхностью и касательной плоскостью, проведенной через режущую кромку.

Выполнение работ" href="/text/category/vipolnenie_rabot/" rel="bookmark">выполнения работы

2.2.2. Ознакомиться с конструкцией и органами управления горизонтально-фрезерного станка. Изучить основные виды работ, выполняемых на нем. Выполнить схемы фрезерования.

2.2.3. Получить индивидуальное задание.

2.2.4. Назначить типы фрез с учетом профиля поверхностей детали индивидуального задания. Разработать эскизы наладок.

2.2.5. Назначить тип приспособления для закрепления детали индивидуального задания на станке.

2.2.6. Выполнить эскиз цилиндрической фрезы, указав ее составные элементы и геометрические параметры.

2.2.7. Составить отчет о работе.

2.3. Материалы и оборудование

1. Горизонтально-фрезерный станок модели 6П80Г.

3. Приспособления для закрепления заготовок: прижимные планки, прихваты, поворотные машинные тиски, призмы.

4. Чертеж детали индивидуального задания.

5. Плакаты.

Контрольные вопросы

1. Основные узлы станка модели 6П80Г и их назначение.

2. Классификация движений в станке.

3. Основные виды работ, выполняемых на фрезерных станках.

4. Основные приспособления, применяемые при выполнении работ на фрезерных станках.

5. Основные типы фрез.

6. Элементы и геометрические параметры цилиндрической фрезы.

ЛИТЕРАТУРА

1. Дальский A. M. Технология конструкцион­ных материалов. / , и др. − М.: Машиностроение, 2008 − 560 с.

2. Фетисов и технология металлов / , и др. − М.: Высшая школа, 2008. – 876 с.

ОБРАБОТКА ДЕТАЛЕЙ НА ФРЕЗЕРНЫХ СТАНКАХ

Методические указания

к выполнению лабораторной работы

Составили: АРТЕМЕНКО Александр Александрович

БАСКОВ Лев Васильевич

КОНОПЛЯНКИН Сергей Владимирович

Рецензент

Редактор

Подписано в печать Формат 60x84 1/16

Бум. тип. Усл.-печ. л. 1,16 (1,25) Уч.-изд. л. 1,1

Тираж 100 экз. Заказ Бесплатно

Саратовский государственный технический университет

Копипринтер СГТУ, 410054 7

gastroguru © 2017