Два способа изготовления печатной платы. Способы печатания методом термического переноса массы Термический способ переноса изображения называется

Д. ЕГОШКИН, г. Рязань
Тепловой способ переноса рисунка проводников на заготовку печатной платы [1 ] принят "на вооружение" многими радиолюбителями. С другой стороны, чем сложнее плата, тем больше желание упростить процесс ее изготовления.
Обычно для того, чтобы удовлетворительно перевести рисунок большой сложной платы, требуется несколько попыток, поскольку контролировать "на глаз" тепловой режим на значительной площади заготовки крайне трудно. Из-за многократного прогрева заготовки не исключены местные отслоения фольги.

Авторы статей [1—4 ] попытались систематизировать процесс перевода рисунка на фольгу заготовки и предложить удачные варианты процесса. Основываясь на собственном опыте "пла-тостроения", я тоже хочу предложить некоторые усовершенствования технологии переноса рисунка.
Бумага, как и предлагают указанные авторы, — тонкая, глянцевая. Заготовку платы перед переносом на нее рисунка нужно прогреть утюгом с противоположной стороны, и уже после достижения температуры, близкой к температуре плавления тонера, перевернуть, наложить бумагу с рисунком и прогреть тонер обычным способом. Прогревание заготовки способствует лучшему плавлению тонера со стороны фольги, что улучшает их сцепление при меньшем проникновении в бумагу.
В отличие от описанного в [1—4 ], бумагу я снимаю не после того, как тонер остынет, а пока еще он расплавлен (постепенно, вслед за движением утюга). При этом бумага снимается намного легче и рисунок меньше повреждается. Особенно заметны преимущества горячего съема бумаги, когда лист дважды пропущен через лазерный принтер, в этом случае желательно использовать более толстую бумагу.
Конечно, возможно несовмещение рисунков при повторной печати, но если вручную ориентировать листы в лотке принтера, второй и даже третий проходы через принтер дают практически незаметные расхождения линий. К сожалению, не все принтеры позволяют юстировать лист в подающем лотке. Так как толщина тонера в этом случае удваивается, местные стравливания проводников отсутствуют и плата не требует последующей доработки.
Давление утюга на бумагу должно быть равномерным и меньшим, чем обычно, иначе "толстые" проводники могут быть раздавлены и четкость рисунка ухудшится. Если плата двусторонняя, изготовление второй стороны производится аналогично после травления первой. На время травления второй стороны платы первую защищают лаком (краской).

Второй способ переноса рисунка на заготовку печатной платы — не тепловой, а, скорее, "мокрый". Он состоит из нескольких операций. Лист бумаги с рисунком проводников, распечатанный на лазерном принтере, подвергают воздействию ацетона, бензина или любого другого быстро испаряющегося вещества, растворяющего тонер. Наносить растворитель следует равномерно (я использую для этого распылитель от духов), в небольшом количестве, чтобы тонер не потек, а лишь слегка размягчился по всему объему. В зависимости от качества бумаги может оказаться полезным нанести тонкий слой растворителя на поверхность заготовки, чтобы его хватило только на то, чтобы дополнительно растворить поверхностный слой тонера.
Затем, пока растворитель не испарился, бумагу стороной рисунка проводников прижимают к заготовке и прикатывают фотографическим резиновым валиком. Иногда одного прохода бывает достаточно, чтобы рисунок перешел на заготовку с качеством, достаточным для травления. Но может понадобиться несколько раз прокатать бумагу и даже дождаться полного испарения растворителя. Снимать бумагу в этом случае можно, распылив на нее немного растворителя (или же применить тепловой способ после мокрого и снять бумагу, пока тонер расплавлен).
Так как в мокром способе отсутствует нагревание заготовки, для отслоения фольги нет никаких причин. Адгезия же тонера к фольге получается даже более высокой по сравнению с тепловым способом, так как растворенный тонер имеет меньшую вязкость и лучше смачивает поверхность фольги. Поэтому даже с меньшей, чем при тепловом способе, толщиной защитного слоя рисунка стравливание проводников практически отсутствует.

В качестве варианта можно, наложив лист с рисунком проводников на заготовку, на тыльную сторону листа нанести тонкий слой клея "Момент". На клей нужно положить еще один лист бумаги и прикатать к фольге фотоваликом. Когда размягчившийся тонер прилипнет к плате, следует более тщательно прикатать бумагу валиком меньшей ширины для получения большего давления. Для этого процесса я применяю резиновый прижимной ролик от катушечного магнитофона.
Снимать бумагу с заготовки нужно до того, как клей окончательно засохнет. Качество адгезии очень хорошее, стравливания проводников не происходит. Автор отдает предпочтение именно этому варианту, так как он быстрый, надежный и позволяет после перевода рисунка травить одновременно обе стороны заготовки. Наилучшей для мокрого способа я считаю бумагу "Снегурочка ".

ЛИТЕРАТУРА
1. Черномырдин А. Тепловой способ перенесения рисунка на плату. — Радио, 2001, №9, с. 35.
2. Курилов А. Еще один способ изготовления печатной платы. — Радио, 2004, № 2, с. 37.
3. Радецкий Е. Варианты процесса перенесения рисунка проводников на плату. — Радио, 2006, № 3, с. 35.
4. Исаев А. Варианты процесса перенесения рисунка проводников на плату. — Радио, 2006, № 3, с. 35.

Закрепление состоит в переводе порошка в состояние вязкой жидкости, образующей при затвердевании пленку, имеющую хорошее сцепление с бумагой. Сделать это можно несколькими способами.

    Растворение порошка в парах растворителей (ацетона, четыреххлористого углерода, уайт-спирита), испаряющихся с пропитанных растворителем пористых подушек, находящихся в узких наклонных кюветах. Полимер тонера поглощает растворитель, набухает и, растекаясь, образует жидкую пленку. Теряя растворитель на воздухе, пленка быстро высыхает. Время нахождения копии в парах - 3-10 с. Дольше выдерживать не стоит из-за растекания тонера и искажения штрихов.

    Получается изображение с хорошими репродукционными характеристиками. Когда-то этот способ был широко распространен, но сейчас на практике не применяется, так как органические растворители опасны для здоровья операторов.

    Расплавление смолы, входящей в тонер, с образованием пленки. Этот процесс лежит в основе термических методов закрепления. Самый известный из них - термосиловой (термомеханический) метод. В некоторых инженерных копировальных аппаратах используют бесконтактное термическое закрепление.

Бесконтактное термическое закрепление изображения

Закрепление изображения может производиться с помощью потока теплового ИК-излучения.

Примером служит батарея из нескольких трубчатых тепловых излучателей (рис. 3.3
). Излучатели - кварцевые трубки с размещенной внутри нихромовой спиралью. На рис. 3.3
показана трубка диаметром 10 мм, толщиной стенки 1 мм, нихромовой спиралью мощностью 600 Вт. Длина трубки превышает ширину закрепляемого изображения на удвоенный размер зоны резкого возрастания величины теплового потока. Интенсивность теплового излучения равномерна вдоль оси лампы только в ее средней части. По краям, на расстоянии около 20 мм, поток сильно изменяется. Эти зоны неравномерного нагрева должны находиться за пределами копии. Мощность лампы можно регулировать, изменяя подаваемое на нее напряжение. На рис. 3.3,б
представлена система из двух ламп с отражателем из полированного алюминия 1. Расстояние между лампами a изменяется в зависимости от скорости движения копии. При скорости движения бумаги 2,2 м/мин (7 копий А4 в минуту) a = 40 мм, расстояние до отражателя h 1 = 5 мм, а расстояние от ламп до копии h = 5-8 мм.

Нагрев копии определяется способностью тонерного изображения и бумаги поглощать инфракрасное (тепловое) излучение. Если источником излучения служит импульсная ксеноновая лампа или лампа накаливания с мощным ИК-излучением, мало поглощаемым бумагой (10-15%), то происходит в основном нагрев частиц тонера. Черный тонер поглощает ИК-излучение практически полностью и быстро разогревается до температуры около 160°С. Такое излучение не вызывает тепловой деформации бумаги, так как ею почти не поглощается, что снижает опасность ее застревания в аппарате.

Термосиловой метод закрепления

При термосиловом закреплении копия с тонерным (порошковым) изображением проходит между двумя разогретыми валиками, прижатыми друг к другу (рис. 3.4
). Валики выполняют различные функции.

Прижимной валик 1 прижимает копию лицевой стороной к нагревательному валику (его часто называют фьюзерным) 2. За счет упругой деформации прижимного валика происходят прижим копии под давлением 0,3-0,6 кг/см 2 и изгибание бумаги в зоне контакта в сторону нагревательного валика, что увеличивает площадь контакта.

Нагревательный валик разогревает порошковое изображение до 140-180°С. Тонер оплавляется, и полученная пленка прижимается к бумаге. Время закрепления - 1-2 с.

Фьюзерный валик - полая металлическая (например, стальная) трубка, покрытая слоем тефлона толщиной 40-200 мкм. Этот слой играет роль антипригарного покрытия. Внутри цилиндра размещен нагревательный элемент - галогенная лампа накаливания в форме длинной трубки. Длина трубки превышает ширину максимально допустимого в данном аппарате формата (например, А4) на 30 см с учетом неравномерности нагрева по краям валика.

Прижимной валик - алюминиевый цилиндр, покрытый 10-миллиметровым слоем термостойкой резины, имеющий диаметр и длину одинаковые с фьюзерным валиком.

Копия проходит через закрепляющее устройство (рис. 3.5
), обращенная тонерным изображением в сторону фьюзерного валика, и прижимается к нему вторым валиком. Так как часть тонера может налипнуть на фьюзерный валик, несмотря на исключительно низкие адгезионные свойства тефлона, предусмотрена смазка валика фьюзерным маслом (антипригарной жидкостью). Для этой цели служит специальный узел смазки. Кроме того, в устройстве есть механизм отделения бумаги от валика.

Чтобы обеспечить оплавление порошка, но не допустить вредного перегрева копии, устройство термосилового закрепления снабжено датчиком температуры и термопредохранителем для аварийного отключения нагревательного валика.

Расчет процесса закрепления изображения

Изображение, поступающее в устройство термозакрепления, состоит из частиц тонера, которые должны быть нагреты до температуры, достаточной для закрепления. Для расчета процесса В.Х.Сасом предложена следующая модель.

Представим изображение в виде отдельно лежащих частиц тонера, имеющих форму шариков. Это дает возможность представить закрепление как процесс нагрева отдельной частицы тонера до температуры закрепления. Шарик контактирует с воздухом и бумагой. Примем, что температура воздуха в закрепляющем устройстве вблизи копии равна температуре бумаги. Нагрев проводится излучателями, размещенными по обе стороны копии, и их излучение одинаково.

В основу расчета положены дифференциальные уравнения теплового баланса для частицы тонера и единицы площади бумаги. Уравниваются мощность поглощенной тепловой энергии, с одной стороны, и нагревание частицы и рассеяние поглощенного тепла в окружающее пространство, с другой стороны. Уравнение теплового баланса для частицы тонера выглядит так:

где q - удельная мощность теплового потока, подаваемого закрепляемому изображению со стороны тонерного изображения, Вт/м 2 ;

A т - коэффициент поглощения излучения тонером;

S - площадь проекции частицы тонера, S = πd2/4, м 2 , где d - диаметр частицы, м;

t - время нагревания. с;

Масса частицы тонера г;

γ - удельная масса тонера, г/м 3 ;

с т - удельная массовая теплоемкость материала тонера, Дж/(г×град);

S 1 - площадь поверхности частицы м 2 ;

T - температура, до которой нагрета частица, К;

T" в - температура воздуха вблизи частицы, К;

α - коэффициент теплоотдачи, Вт×м -2 ×град -1 ; α = 2λ/d, где

λ - коэффициент теплопроводности воздуха, Вт×м -1 ×град -1 .

Скорость воздуха относительно частиц тонера принята за нуль. Температура воздуха вблизи изображения равна температуре бумаги Т б.

Температуру бумаги получают, решив дифференциальное уравнение теплового баланса для бумаги, отнесенного к единице ее площади. Градиент температуры по толщине бумаги принят за нуль.

Коэффициент поглощения излучения бумагой равен А б, а если облучение идет с двух сторон, то суммарный коэффициент, К = 2А б.

Уравнение теплового баланса представлено следующей формулой:

где γ б - масса единицы площади бумаги, г/м 2 ;

c б - удельная массовая теплоемкость бумаги; Дж/(г×град);

T B - температура воздуха в закрепляющем устройстве, К.

В результате решения этого уравнения получено выражение

где

T 0 - начальная температура бумаги.

Величина Dt в реальных условиях мала, и поэтому при разложении в степенной ряд ограничиваются первыми двумя членами ряда. Получим выражение для температуры бумаги

Это выражение подставим в уравнение теплового баланса .

Решив уравнение , получим уравнение процесса термического закрепления (для t ≥ 0,05 с):

При закреплении изображения рассматриваемым способом частицы различных размеров нагреваются до разных температур. Чем меньше размер частицы, тем ниже ее температура. Процесс закрепления практически реализуется, если все элементы изображения достигнут температуры плавления тонера. Необходимую для этого температуру назовем T 3 (температура закрепления). Однако при этом никакой произвольно выбранный элемент изображения не должен нагреваться до температуры T i , превышающей предельно допустимую температуру Т пр, иначе копия будет повреждена. Это условие можно записать так:

Время закрепления определяется по плавлению частиц наименьших размеров. Для этих частиц величина M имеет наименьшее значение: M = M min .

Минимально допустимое время закрепления при заданной удельной мощности нагревательного устройства q получают из формулы , заменив T на T 3 , M на M min , t на t 3 , и решив уравнение относительно времени закрепления t 3:

Минимально возможное время закрепления получим, повысив мощность нагревательного устройства до критической величины q k . Это наибольшая величина q, при которой соблюдается условие , то есть нет опасности повреждения копии из-за перегревания.

Из формулы видно, что помимо свойств тонера (T 3 и M min) на процесс закрепления влияют удельная мощность закрепляющего устройства и свойства бумаги: теплоемкость (c б) и теплоотдача (α б, входящие в константы N и S) () Время закрепления увеличивается с возрастанием теплоемкости и уменьшением теплоотдачи бумаги.

Перенос изображения в цветных копировальных аппаратах

При получении цветных изображений производится накопление изображения, перенос его на приемную подложку и термозакрепление полноцветного изображения.

Принципиально можно представить три технологические схемы.

Второй вариант заключается в прохождении бумаги через 4 или 8 секций печати, в которых на нее последовательно печатаются 4 однокрасочных изображения с одной или с двух сторон. При этом способе скорость получения цветного изображения высока и почти не отличается от скорости черно-белого процесса. Этот способ используют в высокоскоростных копировальных аппаратах и цифровых печатных машинах. Полученная копия проходит термическое закрепление.

Основным термическим способом закрепления цветных изображений является термосиловой.

Способ может быть использован для нанесения изображений на поверхность полотнища, имеющего неплоскую поверхность для печатания, поверхность с неравномерной теплопроводностью и поверхность, химически не согласованную с красителем. Способ состоит из этапов: предварительного подогрева первой поверхности полотнища с целью получения подогретого полотнища; размещения стороны ленты, содержащей краситель, против первой стороны нагретого полотнища в зоне соприкосновения; размещения термической печатающей головки в соприкосновении с указанной лентой со стороны, противоположной красителю; перемещения полотнища по отношению к указанной термической печатающей головке; и селективного локального приложения тепла и давления к ленте со стороны термической печатающей головки в зоне соприкосновения с целью переноса красителя с этой ленты на подогретое полотнище. Предложенный способ обеспечивает получение высококачественных изображений за счет улучшения проницаемости красителя через поверхность подложки и исключает образование пустот в напечатанном изображении. 8 з.п. ф-лы, 8 ил., 1 табл.

Настоящее изобретение относится к усовершенствованному способу печатания на различных подложках методом термического переноса массы, в частности, использующему предварительный подогрев подложки для компенсации неоднородностей теплопроводности и топографии поверхности и/или химической несогласованности.

Термин "термическое печатание" широко используется при описании нескольких различных семейств технологий нанесения изображений на подложку. В число таких технологий входят горячее тиснение, прямая термопечать, печатание с помощью диффузии красителя и печатание методом термического переноса массы.

Горячее тиснение выполняется механическим печатающим устройством, в котором изображение наносится или оттискивается на подложку через (красящую) ленту, как описано в патенте США №4992129 (Sasaki и др.). Изображение переносится на подложку путем нагрева штемпеля и приложения к нему давления. Вследствие этого окрашивающее вещество ленты, например краска или чернила, переносятся на подложку в том месте, куда был приложен штемпель. Перед нанесением изображения на подложку она может быть подогрета. Поскольку форма штемпеля фиксирована, метод горячего тиснения не обеспечивает простоты изменения наносимых на подложку знаков или изображений. Следовательно, метод горячего тиснения обычно оказывается бесполезным для печатания переменной информации, например для печатания номерных знаков для автомобилей.

Метод прямой термопечати широко применялся в первых образцах факсимильных аппаратов. Эти системы требовали применения специальных подложек, в состав которых входил краситель, благодаря чему бумага могла изменять свой цвет при локальном нагреве в заданных местах. При работе устройства подложка перемещалась поперек ряда узких индивидуальных нагревателей (пикселей), которые селективно нагревали (или не нагревали) подложку. Там, где пиксели нагревали подложку, подложка меняла свой цвет. Управляя нагревом пикселей, можно было сформировать на подложке любые изображения, например буквы или цифры. Однако подложка могла не предусмотренным образом менять свой цвет под действием света, тепла или механических нагрузок.

Печатание с помощью диффузии красителя использует для перемещения красителя физический процесс диффузии красителя от слоя, являющегося донором красителя, к получающей краситель подложке. Аналогично методу прямой термопечати здесь подложка и содержащая краситель лента перемещаются перед рядом узких индивидуальных нагревателей (пикселей), которые селективно нагревают ленту. Там, где пиксели нагревают ленту, краситель расплавляется и благодаря диффузии проникает в подложку. Известны некоторые красители, которые, попав на подложку благодаря диффузии, химически взаимодействуют с ней. Тогда цвет изображения может зависеть от хода химической реакции. В результате, если тепловой энергии оказалось недостаточно (мала температура или продолжительность нагрева), возможно неполное проявление плотности цвета. Поэтому проявление цвета после диффузии красителя часто сопровождают дополнительным этапом термического закрепления. В качестве альтернативы в патенте США №5553951 (Simpson и др.) описано использование одного или нескольких термостабилизированных валков, установленных до или после зоны печати, чем обеспечивается более точное регулирование температуры подложки в ходе процесса печатания.

Печатание методом термического переноса массы, известное так же как термическое печатание с переносом, бесконтактное печатание, термическое графическое печатание или термография, стало популярным и коммерчески эффективным для формирования знаков на подложках. Так же, как и в методе горячего тиснения, здесь для переноса изображения с ленты на подложку используются тепло и давление. Так же, как и в методах прямой термопечати и печатания с помощью диффузии красителя, здесь пиксельные нагреватели селективно нагревают ленту, чтобы перенести краситель на подложку. Однако краситель ленты, используемой для печатания методом термического переноса массы, содержит полимерное связующее, как правило, составленное на основе воска и/или смолы. Поэтому, когда пиксельный нагреватель нагревает ленту, масса воска и смолы переносится с ленты на подложку.

Одной из проблем, связанных с печатанием методом термического переноса массы, является задача создания высококачественных изображений на "неудобных" поверхностях, таких как неплоские или шероховатые поверхности, поверхности с неравномерной теплопроводностью или поверхности, состав которых химически не согласован со связующим красящего вещества.

На фиг.1 приведен пример подложки 20, которая одновременно имеет и шероховатую поверхность для печатания 22, и неравномерную теплопроводность. Световозвращающий слой 20 состоит из множества стеклянных бусинок 24, закрепленных на носителе 26 матрицей 28 из смолы/полимера. В изображенном исполнении световозвращающий слой 29 расположен между носителем 26 и матрицей 28 из смолы/полимера. Как правило, стеклянные бусинки 24 выступают из матрицы 28 из смолы/полимера примерно на 1...5 микрометров, образуя неплоскую шероховатую поверхность для печатания методом термического переноса массы.

Поскольку световозвращающий слой 20 выполнен не из единого однородного материала, теплопроводность разных точек его поверхности для печатания 22 может быть различной. Например, теплопроводность стеклянных бусинок 24 может отличаться от теплопроводности матрицы 28 из смолы/полимера. К тому же, на величину теплопроводности могут влиять неравномерность толщины носителя 26, пустоты в носителе 26 или местные скопления стеклянных бусинок 24 в световозвращающем слое 20. Вследствие этого создание изображения на поверхности для печатания 22 с использованием обычной технологии метода термического переноса массы может приводить к неравномерности толщины термически перенесенного слоя 23 и/или неравномерной адгезии точек (пикселей) красителя с соответствующим ухудшением качества печати.

На фиг.2 показан другой вариант подложки, имеющей поверхность для печатания 30 с переменной теплопроводностью. На фиг.2 изображен закрытый (капсулированный) световозвращающий слой 32. Его микросферы или бусинки 34 закреплены на носителе 36, но между ними размещен дополнительный отражающий слой 38. К носителю 36 на множестве выступающих опор 42 прикреплен защитный слой 40. Между защитным слоем 40 и микросферами 34 образуются зазоры 44. Поэтому в областях над зазорами 44 и в областях над выступающими опорами 42 теплопроводность поверхности для печатания 30 существенно различна. При использовании метода термического переноса массы, толщина и плотность слоя красителя 46 в местах расположения зазоров 44 и в местах расположения выступающих опор 42 обычно оказываются не одинаковыми.

На фиг.3 приведен пример закрытого (или капсулированного) световозвращающего слоя, в котором выступающие опоры образуют на поверхности для печатания гексагональную решетку. На фиг.3 видно, что сквозь напечатанное на световозвращающем слое изображение из-за неоднородности теплопроводности поверхности для печатания просвечивает гексагональная структура выступающих опор.

Патенты США №5818492 (Look) и №5,508,105 (Orensteen и др.) показывают, что печать методом термического переноса массы может быть выполнена на световозвращающих материалах в тех случаях, когда на них нанесен слой (или слои) полимерного покрытия. Хотя добавление полимерного слоя улучшает пригодность для печатания некоторых световозвращающих материалов, сам процесс нанесения такого слоя удорожает конечный продукт и может ухудшить его световозвращающие свойства. Но даже при наличии такого дополнительного слоя в некоторых графических применениях качество печати может оставаться неудовлетворительным. Добавление удобного для печатания слоя может изменить и другие характеристики световозвращающего материала, например его хрупкость.

В JP-A-05-270044 описан способ регистрации методом термического переноса массы, при котором изображение передается на воспринимающую поверхность путем нагревания промежуточного элемента термического переноса с помощью нагревателей для переноса изображения, причем воспринимающая поверхность предварительно подогревается в то время, когда нагреватели для переноса изображения нагревают промежуточный элемент термического переноса.

В JP-A-05-227977 описан способ переноса изображения, использующий замкнутую в кольцо промежуточную ленту, на одну из поверхностей которой нанесен слой прозрачного красителя, устройство для селективного нанесения изображения на окрашивающий слой, устройство, позволяющее привести окрашивающий слой промежуточной ленты в соприкосновение с воспринимающей поверхностью, и устройство для переноса красящего слоя на воспринимающую изображение поверхность путем прикладывания тепла и давления. Этот способ содержит этап предварительного подогрева промежуточной ленты перед приложением тепла и давления.

Наиболее распространенные способы улучшения качества печати при печатании на неудобных поверхностях методом термического переноса массы заключаются в увеличении тепловой энергии печатающей головки и в увеличении усилия, прикладываемого к печатающей головке опорным валиком. Однако увеличение тепловой энергии и давления на печатающую головку может приводить к сокращению срока ее службы, повреждениям ленты, снижению качества печати и росту механических нагрузок в системе. Таким образом, нужны способы и устройства для печатания методом термического переноса массы на подложках, поверхность которых шероховата, имеет неравномерную теплопроводность и/или выполнена из материала, непосредственно не согласованного с красителем ленты для печатания методом термического переноса массы.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к способам и устройствам для предварительного нагрева подложки до заданной температуры, зависящей от характеристик конкретных типов подложки и красителя, которые будут использоваться, с целью улучшения качества печати при минимуме тепловой энергии печатающей головки и давления в устройствах для печатания методом термического переноса масс. Способы и устройства согласно настоящему изобретению расширяют список сочетаний материалов для термического переноса масс и материалов подложек, пригодных для использования печатания методом термического переноса масс. Предлагаемый способ пригоден для подложек, имеющих неплоскую поверхность для печатания, как у некапсулированных световозвращающих покрытий, неравномерную теплопроводность, как у капсулированных и некапсулированных световозвращающих покрытий, или поверхность, химически несогласованную со связующим красителя.

В одной из реализации настоящего изобретения устройство содержит нагреватель, закрепленный на шасси станка для печатания методом термического переноса массы перед (по ходу полотнища подложки) печатающей головкой. Когда полотнище движется, нагреватель излучает тепловую энергию на подложку, нагревая ее и делая ее более восприимчивой к печатаемому изображению. Предпочтительное устройство содержит расположенный поперек печатаемого полотнища неподвижный нагреватель, регулируемый отдельным устройством или тем же самым компьютером, который формирует изображение. Как правило, выходная мощность нагревателя поддерживается на минимальном уровне, необходимом для достижения оптимального качества печати. В устройствах, имеющих несколько печатающих головок, подобные нагреватели могут дополнительно устанавливаться перед каждой (по ходу полотнища подложки) печатающей головкой. Устройство может быть дополнительно оснащено излучающими нагревателями и подвижными тепловыми экранами, позволяющими циклически мгновенно включать и выключать подогрев. В одной из реализации тепловой экран выполнен в виде венецианских жалюзи, которые можно попеременно закрывать и открывать, периодически подставляя полотнище под излучение нагревателя.

В одной из реализации способ, состоящий в термическом переносе содержащего связующее вещество красителя с ленты на первую поверхность полотнища, имеющего неоднородную теплопроводность (теплоемкость), включает предварительный подогрев первой поверхности полотнища перед печатанием методом термического переноса массы. Содержащая краситель поверхность ленты располагается так, чтобы она соприкасалась с первой поверхностью полотнища. Термическая печатающая головка соприкасается со стороной ленты, противоположной стороне с красителем. Полотнище перемещается по отношению к термической печатающей головке. Печатание осуществляется путем селективного приложения тепла термической печатающей головки к отдельным местам на ленте и приложения давления в зоне соприкосновения, чтобы вызвать перенос красителя с ленты на подогретое полотнище.

В другой реализации настоящее изобретение включает в себя расположение множества термических печатающих головок в соприкосновении с обратными красителю сторонами соответствующего множества лент. В одной из реализации первая поверхность полотнища предварительно подогревается перед тем, как она войдет в каждое из своих соприкосновений с лентами. В одной из реализации со множеством печатающих головок на каждой из головок могут использоваться ленты различных цветов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет поперечное сечение изображения, созданного на стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.2 представляет поперечное сечение изображения, созданного на капсулированном стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.3 представляет изображение, созданное на капсулированном стеклярусном световозвращающем материале посредством обычного печатания методом термического переноса массы.

Фиг.4 представляет схематический чертеж станка для печатания методом термического переноса массы в соответствии с настоящим изобретением.

Фиг.5 представляет поперечное сечение незащищенного стеклярусного покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.6 представляет поперечное сечение капсулированного световозвращающего покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.7 представляет поперечное сечение другого варианта капсулированного световозвращающего покрытия с изображением, созданным посредством печатания методом термического переноса массы способом согласно настоящему изобретению.

Фиг.8 представляет пример изображения, созданного на капсулированном световозвращающем покрытии способом согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Красителем называется связующее вещество из воска или смолы, или из их сочетания, содержащее пигменты и/или чернила, способные создавать изображения или знаки на поверхности полотнища. Печатающим методом термического переноса массы называются такие процессы, которые обеспечивают перенос красителя с ленты на подложку путем одновременного локального приложения тепла и давления. Лентой называется тканый носитель, на одной из поверхностей которого находится краситель. Термином "химическая несогласованность" обычно обозначают недостаточную адгезию красителя, недостаточную проницаемость красителя через поверхность подложки и высыхание красителя в процессе печатания методом термического переноса массы, что увеличивает процент пустот в напечатанном изображении.

Фиг.4 является схематическим изображением станка 50 для печатания методом термического переноса массы согласно настоящему изобретению. Печатающая головка установлена так, что она касается первой стороны 68 движущегося полотнища 54, когда оно проходит через станок 50 для печатания методом термического переноса массы. Лента для термического переноса массы 56а в зоне соприкосновения 58а помещена между печатающей головкой 52а и движущимся полотнищем 54. В изображенной реализации лента для термического переноса массы 56а прижимается к печатающей головке 52а подающим роликом 60а и отводящим роликом 62а. Опорный валок 64а расположен на обратной стороне полотнища 54, чтобы поддерживать давление в зоне соприкосновения 58а.

Полотнище 54 перемещается в направлении 66 механизмом любой известной конструкции, например фрикционным механизмом с приводом от шагового двигателя. Печатающая головка 52а, которая остается неподвижной, находится в контакте с лентой для термического переноса массы 56а и передает краситель с ленты 56а на первую сторону 68 движущегося полотнища 54. Если перенос красителя завершен или не должен выполняться, печатающую головку 52а и ленту для термического переноса массы 56а можно, при желании, отодвинуть от движущегося полотнища 54 по направлению оси 70а.

Нагреватель 72 расположен перед (по ходу полотнища) печатающей головкой 52а. В показанной реализации нагревателем является горячий полый валок 73. Длина участка полотнища 54, огибающего горячий полый валок 73, может изменяться сообразно условиям применения. В некоторых реализациях горячий полый валок 73 для предотвращения прилипания полотнища 54 при повышенных температурах отполирован и/или имеет напыленное плазмой покрытие из тефлона®. Горячий полый валок 73 нагревается обычным электрическим трубчатым нагревателем, который остается неподвижным внутри вращающегося горячего полого валка 73. Горячий полый валок 73 может быть установлен на подшипниках, чтобы он свободно вращался при движении полотнища 54. В показанной реализации номинальная мощность нагревателя равна 2000 Вт или примерно 200 Вт на дюйм (79 Вт/см). В число альтернативных нагревателей входят конвективные нагреватели, ультрафиолетовые нагреватели, микроволновые генераторы, радиочастотные генераторы, нагревательные лампы и т.п.

Изображенный на фиг.4 станок 50 для печатания методом термического переноса массы содержит четыре печатающих головки 52а, 52b, 52с, 52d и связанных с ними структур. В одной из альтернативных реализаций дополнительные нагреватели 74b, 74с и 74d расположены (считая по ходу движения полотнища в направлении 66) перед термическими печатающими головками 52а, 52b, 52с и 52d. В изображенном исполнении добавочными нагревателями 72b, 72с, 72d служат нагревательные лампы. В исполнении, изображенном На фиг.4, на полотнище 54 могут наноситься знаки или изображения более чем одного цвета. При использовании лент для термического переноса массы черного, пурпурного, голубого и желтого цветов может быть обеспечена четырехцветная печать или печать составными цветами, если прозрачные красители, переносимые каждой из печатающих головок 52а, 52b, 52с и 52d, будут перекрывать друг друга.

Термические печатающие головки 52а, 52b, 52с и 52d функционируют, чтобы переносить дискретные порции красителя на первую сторону 68 полотнища 54. Размер площадки передаваемого красителя ("точки") определяется площадью каждого отдельного элемента печатающих головок. Такие точки обычно занимают около 0,006 квадратного миллиметра, что соответствует площади единичного пикселя. Разрешение знаков, нанесенных печатающими головками 52а, 52b, 52с и 52d, обычно составляет от примерно 75 до примерно 250 точек на линейный сантиметр.

Термином "термическая печатающая головка" обозначается устройство или устройства, в которых локально генерируется тепло для переноса красителя. Это локальное тепло может генерироваться резистивными элементами, контактирующими с лентой элементами лазерной системы, электронными элементами, термически управляемыми вентильными элементами, индукционными элементами, термостолбиками термоэлектрической батареи и т.п. В качестве примера печатающей головки, которая может быть использована в изображенном На фиг.4 станке 50 для печатания методом термического переноса массы, является печатающая головка, встраиваемая в аппарат, поставляемый фирмой Zebra Technologies Corp., Vernon Hills, IL под торговой маркой Model Z170. В лентах для печатания методом термического переноса массы 56а, 56b, 56с и 56d могут быть использованы связующие на основе воска, смолы или сочетаний смолы и воска. Для использования в изображенном на фиг.4 станке 50 для печатания методом термического переноса массы пригодны ленты, поставляемые фирмой Zebra Technologies Corp., Vernon Hills, IL под торговой маркой Zebra (модели 5030, 5099 и 5175). Такие ленты для печатания методом термического переноса массы, как правило, имеют полиэфирную подложку толщиной около 6 микрометров и слой красителя толщиной от приблизительно 0,5 микрометров до приблизительно 6,0 микрометров. Дополнительная информация, относящаяся к обычным технологиям печатания методом термического переноса массы, изложена в патентах США №5818492 (Look) и №4847237 (Vanderzanden).

На фиг.5 представлено в увеличенном масштабе поперечное сечение световозвращающего материала 20 по фиг.1, имеющее изображение 100, сформированное на неплоской поверхности 102 путем печатания методом термического переноса масс по способу и с помощью устройства согласно настоящему изобретению. Термин "неплоская поверхность для печатания" соответствует поверхностям с шероховатостью от не менее чем 1 микрометра до приблизительно 5 микрометров. Листовой капсулированный световозвращающий материал может иметь шероховатость от примерно 10 микрометров до примерно 15 микрометров. Световозвращающий материал 20 имеет также неоднородную структуру по вертикальной оси и пустоты в матрице 28 из смолы/полимера, которая прикрепляет бусинки к подложке 26. Как показано на фиг.1, полученный методом термического переноса массы слой, образующий изображение 100, имеет в целом неоднородную адгезию термически перенесенной массы к световозвращающему материалу 20.

Фиг.6 изображает вид сбоку на поперечное сечение капсулированного световозвращающего материала, имеющего поверхность для печатания 110. Сочетание выступающих опор 112 и зазоров 114 создает неравномерность теплопроводности и теплоемкости поверхности для печатания 110, измеренных вдоль оси, перпендикулярной поверхности для печатания 110. Предлагаемые способ и устройства для печатания методом термического переноса массы обеспечивают получение практически равномерного слоя 116, нанесенного методом термического переноса массы, несмотря на неравномерность теплопроводности.

Фиг.7 изображает вид сбоку на поперечное сечение капсулированного световозвращающего материала 120, у которого неплоская поверхность для печатания 122 имеет к тому же неравномерную теплопроводность. Как отмечалось выше, выступающие опоры 124 и зазоры 126 создают неравномерность теплопроводности поверхности для печатания 122. Нерегулярность поверхности, образованной кубическими уголковыми элементами 125, также вносит свой вклад в неравномерность теплопроводности. Кроме того, процесс наложения герметизирующей пленки 125 приводит к образованию на поверхности для печатания 122 вдавленных линий герметизации 130. Невзирая на эти два дополнительных неудобства, предлагаемые способ и устройства для печатания методом термического переноса массы обеспечивают получение на поверхности для печатания 122 практически равномерного слоя 132, нанесенного методом термического переноса массы.

На фиг.8 показан логотип, напечатанный на капсулированном световозвращающем материале с использованием способа и устройств согласно настоящему изобретению. В противовес результатам, показанным на фиг.3, предлагаемые способ и устройства обеспечили получение практически равномерного изображения несмотря на гексагональную структуру герметизирующих линий и соответствующую неравномерность теплопроводности.

Предлагаемые способ и устройства для печатания методом термического переноса массы могут использоваться для печатания буквенно-цифровых знаков, графических изображений, штрих-кодов и т.п. Полотнище может быть капсулированным или не капсулированным световозвращающим материалом, например материалом с кубическими уголковыми элементами, описанным в патентах США №№3684348, 4801193, 4895428 и 4938563; или стеклярусным линзовым материалом, содержащим открытые линзовые элементы, капсулированные линзы или вмонтированные линзы, как описано в патентах США №№2407680, 3190178, 4025159, 5064272 и 5066098.

ПРИМЕРЫ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

С помощью станка для печатания методом термического переноса массы, в целом аналогичного показанному На фиг.4, была приготовлена серия согласованных пар отпечатанных образцов с предварительным подогревом полотнища перед печатанием и без подогрева. Все образцы были отпечатаны методом термического переноса массы с помощью ленты сапфирно-голубого цвета марки DC300 для печатания методом термического переноса массы, поставляемой фирмой IIMAK Corp. of Amhurst, NY. У каждого образца определялся процент пустот в окончательном изображении. Полотнище проходило через станок с линейной скоростью около 7,62 сантиметра в секунду (3 дюйма в секунду). В процессе печатания использовались одни и те же изображения и одинаковая тепловая энергия. Для образцов с предварительным подогревом температура предварительного подогрева варьировалась от примерно 76,7С до примерно 93,4С (от 170F до 200F), как показано в таблице.

В качестве образцов А, В, I, J, О и Р использовался световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из пластифицированного термополимера поливинилхлорид-винилацетат-винилалкоголь. Для образцов С и D был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 4770А фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из поперечно-связанного алифатического уретана. Для образцов Е и F был использован световозвращающий материал для автомобильных регистрационных номеров High Intensity Grade марки Scotchlite Series 3870 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с акриловым покрытием. Для образцов G и Н был использован световозвращающий материал для автомобильных регистрационных номеров Diamond Grade марки Scotchlite Series 3970 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с акриловым покрытием. Для образцов К и L был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с незащищенной поверхностью из поливинилбутираля и незащищенными стеклянными бусинками. Для образцов М и N был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из поперечно-связанного алифатического уретана. Для образцов Q и R был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 3750 фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из алифатического полиэстеруретана. Для образцов S и Т был использован световозвращающий материал для автомобильных регистрационных номеров марки Scotchlite Series 4770A фирмы Minnesota Mining and Manufacturing Co., St. Paul, MN с покрытием из экструдированного сополимера этилена и акриловой кислоты.

Использование способов и устройств согласно настоящему изобретению для предварительного подогрева полотнища привело к сокращению количества пустот в окончательном изображении в интервале от 55% до 95,6%. Наиболее впечатляющее видимое изменение качества изображения произошло с образцами Е и F. Образцы С и D оказались, вероятно, самым неудобным материалом для печатания методом термического переноса массы из-за химической несогласованности полотнища и термически переносимого вещества ленты. Предварительный подогрев полотнища привел к сокращению на 78,8% количества пустот в окончательном изображении. Использованный для образцов К и L материал с незащищенными линзами имел самую большую шероховатость. Предварительный подогрев привел к сокращению количества пустот в окончательном изображении приблизительно на 60%.

Хотя некоторые воплощения настоящего изобретения остались не описанными для знакомых с этой областью техники очевидно, что в них могут быть сделаны различные изменения и модификации, не отклоняющиеся от изложенной выше концепции изобретения. Поэтому объем настоящего изобретения не может быть ограничен структурами, описанными в этом тексте, а лишь только структурами, описанными языком формулы изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ печатания методом термического переноса массы красителя с ленты на первую поверхность полотнища, состоящий из этапов предварительного подогрева указанной первой поверхности этого полотнища с целью получения подогретого полотнища, причем эта первая поверхность представляет собой (исключительно или в любом сочетании) неплоскую поверхность, поверхность с неравномерной теплопроводностью и поверхность, химически не согласованную с красителем; размещения стороны ленты, содержащей указанный краситель, напротив первой стороны указанного нагретого полотнища в зоне соприкосновения; размещения термической печатающей головки в соприкосновении с указанной лентой со стороны, противоположной указанному красителю; перемещения указанного полотнища к указанной термической печатающей головке и селективного локального приложения тепла и давления к указанной ленте со стороны указанной термической печатающей головки в указанной зоне соприкосновения с целью переноса указанного красителя с этой ленты на указанное подогретое полотнище.

2. Способ по п.1, отличающийся тем, что указанное полотнище представляет собой незащищенный световозвращающий материал.

3. Способ по п.1, отличающийся тем, что содержит этап перемещения указанного полотнища перед неподвижной термической печатающей головкой.

4. Способ по п.1, отличающийся тем, что содержит этап размещения множества термических печатающих головок в соответствующем множестве зон соприкосновения.

5. Способ по п.1, отличающийся тем, что содержит этапы размещения множества термических печатающих головок в соответствующем множестве зон соприкосновения и подогрева указанной первой поверхности указанного полотнища перед проходом этого полотнища каждой из множества зон соприкосновения.

6. Способ по п.1, отличающийся тем, что содержит этапы перемещения указанного полотнища перед множеством неподвижных термических печатающих головок и размещения источников тепла перед (по ходу полотнища) каждой из термических печатающих головок.

7. Способ по п.1, отличающийся тем, что содержит этап размещения поверхностей множества содержащих краситель лент напротив первой стороны указанного нагретого полотнища во множестве соответствующих зон соприкосновения, образованных множеством соответствующих термических печатающих головок.

8. Способ по п.7, отличающийся тем, что две или более лент содержат красители разных цветов.

9. Способ по п.1, отличающийся тем, что указанное полотнище представляет собой капсулированный световозвращающий материал.

Необходимо определиться с текстом и видом Вашей «рекламы», ведь цена на сувенирную продукцию во многом зависит от типа печати, тиража продукции, основного носителя.


Шелкография и темпопечать подходит для печати крупного тиража (свыше 1000 шт.), нанесения одинакового рисунка на кружки или футболки. Если использовать эти технологии на тираж 50 шт, то стоимость одной единицы продукции будет слишком высокой. Для выпуска единичной сувенирной продукции и продукции небольшого тиража мы советуем использовать термоперенос.


Термоперенос - это термический способ переноса изображения. Эта технология, которая получила большое развитие в последнее время, позволяет наносить изображение практически на любую поверхность: на тканевую основу, кожаную, на изделия из глины и фарфора. На сегодняшний день эта технология является наиболее доступной и простой. Кроме того, стоимость изготовления сувенирной продукции по данной технологии является доступной в денежном эквиваленте.


Для нанесения разноцветного изображения необходимо повторить процедуру столько раз, сколько используется в макете цветов. Плоттер подключают к компьютеру, и он распознает изображение, готовое к нанесению. Затем плоттер режет изображение на материале-основе по заданным в компьютере линиям. Материалом-основой служит пленка, состоящая из двух слоев: основы из полимера и непосредственно термопленки. Плоттер прорезает только толщину термопленки, что позволяет изображению не отрываться от основы, а быть «в сборе» вплоть до термического переноса изображения.


Технология термопереноса:


1. Макет изображения может быть создан в любой программе;


2. Необходимое изображение из компьютера передается на плоттер, который вырезает макет на материале-основе.


3. Затем отделяются и снимаются лишние участки пленки;


4. В результате обработки и очистки получаем готовый трансфер;


5. Трансфер (трафарет) накладывается на ткань и прогревается в термопрессе;


6. Изображение остается на ткани, а подложка удаляется.


Основные преимущества термопереноса:


  • После термопереноса изображение нельзя отделить от ткани.

  • Изображение термоустойчиво: не смывается при стирке до 80 С.

  • Термопереносу подвластны и единичные тиражи, и тысячные заказы.

  • Четкое качество изображения на ткани достигается благодаря высокой точности резки.

  • Время, которое затрачивается на 1 сеанс термопереноса, занимает всего 8 секунд. Весь процесс резки и размещения макета на ткани занимает около минуты.

Две технологии применимы при процессе термопереноса:


1. The Magic Touch (волшебное прикосновение) – печать на специальной бумага с помощью лазерного принтера. Затем с бумажной основы изображение передают на материал-основу с помощью термопереноса.


2. Второй технологией является также печать на спецбумаге с помощью струйного принтера, но с использованием сублимационных чернил. Затем также идет процесс термопереноса.


Термоперенос считается наилучшей методикой современности. Хотя в последнее время разрабатываются альтернативные технологии, но они являются более дорогостоящими. Термоперенос позволяет получать надежные и долговечные изображения высокого качества.

Изобретение относится к технологическим процессам переноса изображения на различные поверхности изделий, изготовленных из различных материалов. В способе переноса изображения осуществляют сканирование изображения, выводят изображение на монитор, связанный с компьютером, выводят прямое или обратное изображение с помощью принтера на трансферный материал и переносят выведенное изображение на подложку путем совмещения трансферного материала с изображением с подложкой. После совмещения трансферного материала с подложкой осуществляют их термическую обработку в течение 10 с при температуре 50°С, необходимую для подложек, выполненных из плавких материалов, и в течение 30 мин при 350°С - для подложек из тугоплавких материалов. Далее отделяют трансферный материал от подложки и защищают полученное изображение от внешних разрушающих его воздействий путем нанесения полимерных покрытий и термообработки. Данная технология позволяет повысить долговечность, стойкость, прочностные характеристики перенесенного изображения в условиях разрушающих воздействий температуры и влаги. 3 ил.

Изобретение относится к технологическим процессам переноса цветного или черно-белого изображения на различные поверхности и может быть использовано в полиграфической промышленности, при изготовлении декоративных материалов, при создании защитно-декоративных покрытий керамических изделий, стекла и металла; в оформительском деле, в мемориальных досках и памятниках, витражах. Известны растровые способы бесконтактной записи изображений и информации на поверхность носителя путем дозирования расходов красочных составов в направлении в сторону поверхности за счет применения струйных принтеров (см. патент Великобритании 2220892, кл. B 41 J 3/04, 1998). В декоративно-оформительском деле, для создания театральной декорации, цветных витражей используют способ фотолитографии, заключающийся в контактном экспонировании с эмульсионных фотошаблонов. Для защиты изображения от вредного воздействия среды используют пленочные защитные покрытия на основе высыхающих масел, масляных лаков, синтетических смол, высокополимерных материалов (см. , 1994). Известен способ переноса изображения на различные поверхности, использующий пульверизационный принцип переноса (см. патент США 4839666, 1989 г.). Способ заключается в построчной развертке считывания оптического изображения в плоскости его фокусирования и синтезе копии этого изображения на поверхности. К недостаткам известных способов относятся: - низкое качество воспроизведения изображения; - невозможность применения при различных подложках, таких как керамика, различные ткани; - невозможность переноса изображения на фигурные поверхности; - низкие прочностные характеристики поверхности; - низкая атмосферостойкость (выгорание). Наиболее близким аналогом предложенного способа переноса изображения на различные поверхности является способ, заключающийся в том, что осуществляют сканирование или пересъемку изображения, выводят изображение на монитор, связанный с компьютером, кадрируют, ретушируют изображение и корректируют его цвет на мониторе, выводят прямое или обратное изображение с помощью принтера или копировального аппарата на трансферный материал и переносят выведенное изображение на подложку путем совмещения трансферного материала с изображением с подложкой (см. Журнал для полиграфистов и издателей "Компьютер" ред. Компьютер пресс, N 7, 1998, стр. 48). К недостаткам ближайшего аналога относятся низкие функциональные возможности из-за отсутствия конкретных режимов технологического процесса, предназначенных для различных материалов, из которых изготовлены подложки; для различных трансферных материалов. Известный способ не учитывает условия применения изделия, на которое перенесено изображение. В известном способе недостаточно уделено внимания долговечности, стойкости и прочности характеристикам перенесенного изображения. Задачей предлагаемого способа переноса изображения на различные поверхности является разработка технологии переноса изображения с применением современных компьютерных технических средств, обеспечивающая повышенную долговечность, стойкость и повышение прочностных характеристик перенесенного изображения в условиях разрушающих воздействий, температуры и влаги. Указанная задача решена за счет того, что в способе переноса изображения на различные поверхности, заключающегося в том, что осуществляют сканирование изображения, выводят изображение на монитор, связанный с компьютером, кадрируют, ретушируют изображение, корректируют его цвет на мониторе, выводят прямое или обратное изображение с помощью принтера или копировального аппарата на трансферный материал и переносят выведенное изображение на подложку путем совмещения трансферного материала с изображением с подложкой, после совмещения трансферного материала с подложкой осуществляют их термическую обработку в течение 10 сек при температуре 50 o C, необходимую для подложек, выполненных из плавких материалов, и в течение 30 мин при 350 o C для подложек из тугоплавких материалов, после чего отделяют трансферный материал от подложки и защищают полученное на подложке изображение от внешних разрушающих его воздействий путем нанесения полимерных покрытий и термообработки. На фиг. 1 представлена технологическая схема переноса изображения; на фиг. 2 изображена операция переноса изображения на подложку; на фиг. 3 изображена операция переноса изображения на подложку, изготовленную из стекла, в этом случае изображение защищено поверхностью стекла, а противоположная от изображения сторона покрыта полимерным покрытием. Существо предлагаемого способа заключается в следующем. Предложенный способ основан на применении современных вычислительных технологий, связанных с применением цифровых устройств ввода и вывода изображений, управляемых компьютером. Предлагаемый способ позволяет осуществлять процесс переноса изображения на фарфоровые, фаянсовые, кожаные, текстильные, глиняные, стеклянные, металлические, пластиковые и другие производные материалы. Полное описание процесса переноса изображения заключается в следующем: - сканирование фотографии или ввод в компьютер при помощи оптических систем, совместимых с компьютером; - обработка в программе пиксельной графики; - вывод через принтер или копировальный аппарат на трансферные материалы; - совмещение трансферного материала с изображением с изделием (подложкой);
- термическая обработка в течение 10 сек - 30 мин при температуре 50-350 o С;
- отделение трансферного материала от изделия (подложки), изображение остается на подложке;
- защита от внешних воздействий;
- термическая обработка в течение 5 - 120 мин при температуре 50-350 o С. В предлагаемом способе могут быть применены различные существующие технические средства для ввода и вывода изображений. Для ввода графической информации могут быть использованы существующие сканеры трех типов устройств: барабанные, планшетные и специализированные слайд-сканеры. Сканирование или цифровой пересъем изображения заключается в вводе изображения в компьютер с применением оборудования, позволяющего перевести оптическое изображение в цифровое. Для этого используются различные виды сканеров, цифровые фотоаппараты, видеокамеры, слайд-сканеры. Изображение выводится на монитор компьютера. С помощью программы пиксельной графики производят кадрирование, ретуширование изображения и корректируют его цвет. Выводят прямое или обратное изображение с помощью принтера или копировального аппарата на трансферный материал. Наилучшее качество изображения получается при использовании принтеров, использующих принцип сухой цветной печати MICRO DRY. Печатная головка принтера состоит из 240 нагревательных элементов, которые при прохождении вдоль красящей ленты нагревают краску до 80 o С и отпечатывают ее на бумагу точками размером в 40 микрон. Краска не пропитывает бумагу, а как бы прилипает к ней, поэтому краски на оттисках выглядят ярче и чище. Изображение не расплывается и не размазывается, не тускнеет со временем и не выцветает на солнце. Такая технология позволяет печатать цветное фотореалистическое изображение на бумаге любого качества: на открытке, на картоне толщиной 0,23 мм, на прозрачной пленке, самоклеящихся пленках, на пластике и фольге. Фотографического качества можно достичь, печатая на фотобумаге. Кроме того, можно применить трансферный материал в виде термопереносной бумаги и пленки, при помощи которых картинки переносятся на различные поверхности, - обложки книг, коробки, плакаты, дерево, пластик, ткани, различные предметы. Принтеры могут печатать металлическими красками (золото, серебро). Прочностные характеристики трансферного материала лежат в пределах 80-150 г/см 2 . Полученное изображение на трансферном материале переносят на подложку (изделие) путем совмещения трансферного материала с подложкой. Трансферный материал может совмещаться с изделиями (подложкой) любой формы, в том числе цилиндрической. После совмещения осуществляют термическую обработку в течение 10 сек - 30 мин при температуре 50-350 o С. Выбранный режим термической обработки обусловлен материалами, из которых изготовлены изделия (подложки). Режим термической обработки, характеризуемый временем обработки от 10 сек при температуре 50 o С, необходим для изделий (подложек), выполненных из плавких материалов, например, из полиэпоксидных смол с восковыми добавками, плавких трансферных материалов. Режим термической обработки до 30 мин и температуре до 350 o С задается для изделий (подложек), изготовленных из мрамора, гранита, металла, покрытых глазурью, трудноплавких материалов. Промежуточные режимы применяют для изделий, изготовленных из дерева, термопластов. При заданном диапазоне термической обработки происходит нарушение связи между краской и трансферным материалом за счет ее размягчения. Происходит прилипание изображения к изделию (подложке) за счет сил адгезии. Силы адгезии между краской и подложкой выше, чем сила между краской и трансферным материалом, поверхность которого покрыта тонкой пленкой. После этого отделяют трансферный материал от подложки, который легко отделяется от слоя краски без его повреждения. Сила адгезии между краской и подложкой становится выше, если изделие (подложка) покрыто глазурью, что обычно имеет место в фаянсовых изделиях, декоративно-художественных изделиях. В ходе термической обработки происходит размягчение глазури, что и приводит к увеличению сил адгезии. В дальнейшем переходят к защите полученного на подложке изображения от внешних разрушающих его воздействий путем нанесения полимерных покрытий и термообработки в течение 5-120 мин при температуре 50-350 o С. В качестве материала полимерного покрытия используют полиэпоксидные смолы, полиэфирные смолы порошкового типа, а также жидкие лаки, не вступающие в химическую реакцию с трансферным изображением. После этого осуществляют термообработку в течение 5-120 мин при температуре 50-350 o С для подложек, изготовленных из любых материалов, кроме содержащих восковые составляющие. Способ по существу охватывает термические режимы для большинства уже существующих трансферных материалов и подложек. В результате осуществления предлагаемого способа переноса изображения получается изображение на требуемом изделии, обладающее высоким качеством, характеризующимся улучшенной цветовой гаммой, высоким художественно-декоративным уровнем и защищенным от вредного влияния окружающей среды. С целью обеспечения повышенной надежности сохранения перенесенного изображения в качестве защитного материала может быть использован экран, изготовленный из стекла. В этом случае выводят прямое изображение на трансферный материал. Проводят термообработку при расположении стеклянного экрана на изображении. После удаления трансферного материала осуществляют защиту обратной стороны изображения от разрушений. Высокое качество переноса и его долговечность достигаются благодаря большим функциональным возможностям применяемых технических средств: сканеров, компьютера, принтера. Применение компьютера позволяет производить операции кадрирования, ретуширования изображения и корректировку его цвета. Ретуширование, коррекция, монтаж изображения позволяют создать (нарисовать) любое свое изображение или обработать введение изображения. В обработку изображения входят:
- кадрирование - изменение формата изображения, удаление или введение в оригинал дополнительных элементов изображения;
- ретуширование - удаление дефектов изображения с применением редакционных компьютерных программ пиксельной и векторной графики;
- раскрашивание, корректировка цвета - нанесение цветовой гаммы на любое изображение. При этом могут использоваться различные программы, широко применяемые в полиграфии и компьютерными художниками. При выводе изображения с применением выводных устройств используются органические и неорганические красители на бумагу и пленки, позволяющие перевести эти изображения на любые поверхности. Термообработка осуществляется с применением электронагревательных камер или путем наложения на изделие резинометаллических электродов для создания локального нагрева либо нагревом изделия любым из известных способов (контактным или бесконтактным) с помощью инфракрасного излучения или горячим воздухом.

Формула изобретения

Способ переноса изображения на различные поверхности, заключающийся в том, что осуществляют сканирование изображения, выводят изображение на монитор, связанный с компьютером, выводят прямое или обратное изображение с помощью принтера на трансферный материал и переносят выведенное изображение на подложку путем совмещения трансферного материала с изображением с подложкой, отличающийся тем, что после совмещения трансферного материала с подложкой осуществляют их термическую обработку в течение 10 с при температуре 50 o C, необходимую для подложек, выполненных из плавких материалов, и в течение 30 мин при 350 o C для подложек из тугоплавких материалов, после чего отделяют трансферный материал от подложки и защищают полученное изображение от внешних разрушающих его воздействий путем нанесения полимерных покрытий и термообработки.

РИСУНКИ

,

NF4A Восстановление действия патента Российской Федерации на изобретение

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 10.05.2008

gastroguru © 2017