Реферат «современное Состояние Офсетной Печати» По Печатному Процессу (Ольшевская Е. Е.)

Реферат

Фотополимерные пластины, экспонирование, лазерная гравировка, флексографская печать, негативное копирование, финишинг.

Объектом анализа являются печатные формы флексографской печати.

Цель работы заключается в сравнении основных особенностей изготовления печатных форм флексографской печати.

В процессе работы были рассмотрены особенности строения и изготовления форм. Отдельная глава посвящена проблемам выбора технологий, материалов и оборудования, возникающим при печати флексографским способом

Результаты сравнения печатных форм выявили преимущества и недостатки технологических процессов, а также был выбран оптимальный способ изготовления формы для представленного образца.


Введение

1. Техническая характеристика изделия

2. Общая технологическая схема изготовления изделия

3. Сравнительный анализ изготовления полимерных форм флексографской печати

3.1 История развития флексографской печати

3.2 Разновидности пластин

3.3 Общие схемы изготовления печатных форм различными способами

3.3.1 Негативное копирование

3.3.2 Технологии СТР

3.3.2.1 Технология прямого лазерного гравирования (LEP)

3.3.2.2 Косвенное лазерное гравирование

4 Выбор технологии, оборудования и материалов для изготовления образца

4.1 Выбор технологического процесса

4.2 Выбор основного оборудования

4.3 Выбор материалов

4.4 Технологические инструкции

5. Расчет количества печатных форм на тираж

Заключение

Список использованных источников

Приложения

флексографский печать технология полимерный


Введение

С каждым годом доля печатной продукции отпечатанной флексографским способом увеличивается. Сегодня флексографская печать применяется в печати на картонных коробках, на гофрированном картоне, при запечатывание гибких полимерных упаковок и даже в газетном производстве. Это связано прежде всего с экономичностью самого процесса, с возможностью получения многокрасочной продукции высокого качества, невысокий выход макулатуры, невысокие инвестиции и многое другое.

В получение любого печатного оригинала непременно присутствует стадия изготовления печатных форм. Формные процессы – одна из важнейших стадий, на которой определяется качество будущей продукции. Получение высококачественной печатной формы требует применение специальных формных материалов и тщательной их обработки.

В настоящее время на российских предприятиях широко начала использоваться технология Computer-to-Plate(CtP), являющаяся основным способом изготовления печатных форм в европейских странах. Данная технология позволяет исключить из процесса изготовление фотоформы, что ведет к сокращению сроков изготовления печатных форм. Внедрение технологии CtPпозволяет повысить качество изображения на печатных формах и улучшить экологические условия на полиграфическом предприятии.

В работе будут рассмотрены основные технологии изготовления печатных форм флексографской печати. На основе анализа данных технологий будет выбран оптимальный способ изготовления печатной формы и даны соответствующие технологические инструкции для выбранного образца.


1. Техническая характеристика изделия

В качестве образца я выбрала этикетку, поскольку именно флексографским способом печати выгодно печатать этот вид изделия. В настоящее время флексографская печать является единственным способом, которым можно экономично запечатывать почти все используемые в упаковочной продукции материалы, обеспечивая при этом одновременно высокое качество печати.

Таблица-1 Техническая характеристика изделия


2. Общая технологическая схема изготовления изделия

1. Обработка текстовой и изобразительной информации:

Ввод информации

Обработка информации посредством Word, Photoshop

Верстка полос QuarkXPress

Спуск полос

Запись PS-файла

Вывод негативной матированной фотопленки

2. Изготовление фотоформы:

Экспонирование

Проявление в щелочном растворе

Закрепление в кислой среде

Промывка водой

3. Изготовление печатной формы:

Входной контроль оборудования и материалов

Засветка оборотной стороны

Основное экспонирование

Проявление

Сушка при to40-60oC

Дополнительное экспонирование

Финишинг

4. Печать тиража:

Красочность 4+0

5. Послепечатные процессы:

Парафинирование


3. Сравнительный анализ изготовления полимерных форм флексографской печати

3.1 История развития флексографской печати

Развитие данного способа началось в США, где флексография благодаря специфическому отношению к упаковке пришлась ко двору. Так как первоначально в этом способе печати использовались анилиновые синтетические красители, то способ определялся терминами «анилиновая печать» или «анилиновая резиновая печать». Общепринятый сегодня термин «флексография» был впервые предложен 21 октября 1952 г. в США на 14-й Национальной конференции по упаковочным материалам. При этом исходили из того, что в этом способе совсем не обязательно должны применяться анилиновые красители. В основу термина были положены латинское слово flex-ibillis, что значит «гибкий», и греческое слово graphlem, что означает «писать», «рисовать».

Точно дату изобретения флексографии назвать трудно. Известно, что еще в середине XIX столетия анилиновые красители использовались при печатании обоев. Анилин - это ядовитая бесцветная малорастворимая в воде жидкость. Анилиновые красители использовались главным образом в текстильной промышленности. Понятие «анилиновые красители» было распространено позже на все органические синтетические красители вообще. Но в настоящее время это понятие считается устаревшим.

Другой важной технической предпосылкой для появления флексографии явилось изобретение эластичных резиновых форм. Они были предназначены для изготовления резиновых штемпелей-печатей. Основным материалом для осуществления способа служил естественный каучук - эластичный материал растительного происхождения. В настоящее время основой для изготовления резиновых печатных форм служит синтетический каучук.

Новый этап в развитии флексографии наступил около 1912 г., когда начали изготовлять целлофановые мешки с надписями и изображениями на них, которые были отпечатаны анилиновыми красками.

Расширению области применения флексографии способствовали определенные преимущества этой разновидности способа высокой печати перед классическими способами, особенно там, где не требовалось получения высококачественных оттисков. Формы высокой печати изготовлялись раньше только из дерева или металла (типографского сплава - гарта, цинка, меди), но с появление эластичных печатных форм в флексографии, в высокой печати стали изготовлять печатные формы и из фотополимеров. Различие между печатными формами высокой классической печати и флексографии только в твердости печатающих элементов. Даже такое небольшое различие в физических свойствах «твердое – эластичное» привело к сильному расширению области применения принципиально одинаковых способов печати.

Флексография соединяет в себе преимущества высокой и офсетной печати и, вместе с тем, она лишена недостатков этих способов.

В 1929 г. флексографию применили для изготовления конвертов для грампластинок. В 1932 г. появились автоматические упаковочные машины с флексографскими печатными секциями - для упаковки сигарет и кондитерских изделий.

Примерно с 1945 г. флексографская печать используется для печати обоев, рекламных материалов, школьных тетрадей, конторских книг, формуляров и другой канцелярской документации.

В 1950 г. в Германии начали выпуск большими тиражами серии книг в мягких бумажных обложках. Печатались они на газетной бумаге, на рулонной ротационной машине анилиновой (через два года она будет названа флексографской) печати. Себестоимость книг была низкой, что позволило издательству резко снизить цены на книжную продукцию.

Примерно в 1954 г. флексографию стали использовать для изготовления почтовых конвертов, рождественских открыток, особо прочной упаковки для сыпучих продуктов.

На протяжении почти всего XX столетия продолжалось совершенствование, как процессов печатания и материалов, применяемых для изготовления эластичных печатных форм, так и конструкции печатных машин для флексографской печати.

Флексография в последние 10 лет стремительно развивалась. По данным многочисленных источников, этот вид печати занимает на рынке долю от 3% до 5% во всех подразделениях мировой упаковочной отрасли, а в полиграфической отрасли стремительно приближается к 70% всей упаковочной печатной продукции. Технологические разработки в области фотополимерных материалов, керамических растровых валов, ракелей и красок буквально перевернули сценарий постепенного развития флексографской печати и ускорили его.

Катализатором явились достижения химической отрасли в области фотополимеров и печатных красок; к ним добавились особо тонкие многослойные формные материалы. Целью создания этих материалов стало улучшение качества флексографской печати. /1/

3.2 Разновидности пластин

Флексографская печать - это способ высокой прямой ротационной печати с эластичных (гибких резиновых, фотополимерных) рельефных печатных форм, которые могут крепиться на формных цилиндрах различных размеров. С помощью валика или растрированного цилиндра, взаимодействующего с ракелем, они покрываются жидкой или пастообразной быстровысыхающей (водорастворимой, на летучих растворителях) печатной краской и переносят ее на запечатываемый материал любого вида, включая и невпитывающие материалы. Изображение на печатной форме - зеркальное.

Повышение качества печати является одной из причин для использования различных формных пластин во флексографии. Именно оно предъявляет требования к свойствам пластин. Современные формы могут переносить однородную красочную пленку при запечатывании сплошных заливных участков (плашек) и дают очень малое растискивание при печати текста, штриховых и растровых изображений. Дальнейшие требования это четкие элементы на выворотке (прием изготовления печатной формы со штрихового изооригинала, когда нужно получить на отпечатке негативное, выворотное изображение: белые штрихи на черном фоне), отсутствие забивания краской пробельных участков формы и лучшая градационная передача полутонов на оттиске.

Первоначально печатные формы изготовляли матрицированием из каучука, а после создания фотополимеров – экспонированием и вымыванием.

Однако есть еще один метод, который находит и до сих пор применение для изготовления авторских форм при линогравюре. На линолеуме либо на сходном с ним полимерном материале автор гравирует изображение из различных по величине линий и поверхностей, убирая материал и углубляя фон. Изображение получается выпуклое, а все возвышающиеся над фоном элементы лежат в одной плоскости. А что это такое, как не печатная форма высокой печати? И так как печатающие элементы эластичные, то это и есть печатная форма для флексографского способа печати. Конечно, для промышленных целей печатные формы не делают из линолеума.

Развитие технологии печатных форм идет в трех главных направлениях. Это печать на гибкой упаковке, печать на этикетках и прямая печать на готовом гофрированном картоне.

В этих трех областях применяют различные формные пластины в зависимости от используемых подложек, компрессионных прокладок или лент, формного материала, его толщины и твердости, устойчивости пластины к набуханию в растворителе краски, требований к качеству, совместимости материалов, а также от конструкции печатной машины.

Для прямой печати на готовом гофрокартоне используют пластины толщиной не менее 3 мм и то они рассматриваются как технология тонких печатных форм. При печати этикеток и на гибкой упаковке ультратонкими считаются пластины, толщиной меньше 1 мм.

Пластины толщиной 2,54 мм устанавливаются на тонкой подложке или вспененной ленте толщиной 0,50 - 0,55 мм. Соответственно, пластины этой толщины в сочетании с амортизационной подложкой рассматриваются как печатные формы на мягкой ленте.

Технология тонких пластин подразумевает «гибкую подложку», которая представляет собой крепление печатной формы. Эта компрессионная подложка, как правило, состоит из комбинации текстильных волокон и резины, причем сорта резины в отдельных подложках различаются специфическими особенностями. Некоторые слои материала подобраны соответствующим образом для оптимизации всей системы «печатная форма – подложка – запечатываемая поверхность - зазор между формным и печатным цилиндрами». Материал состоит из резины-основы, двух волокнистых промежуточных слоев для стабилизации и сжимаемого полимерного микропористого слоя. Общая толщина структуры получается не более 2 мм.

Этот материал, который является разновидностью двусторонней липкой ленты с компрессионной пенополиуретановой прокладкой внутри, может использоваться практически со всеми типами флексографских формных пластин, предохраняет печатную форму от морщин и в то же время обеспечивает ее легкое позиционирование при монтаже и сохраняет в правильном положении в течение всего тиража.

Еще одна разновидность применения тонких печатных форм это гильзовая технология. В отличие от традиционной технологии, она обладает преимуществом многократного использования. Эта система использует принцип воздушной подушки при установке гильзы на формный цилиндр.

В печати на гибкой упаковке в качестве альтернативы тонким печатным формам могут использоваться многослойные пластины, поскольку те и другие имеют сходную структуру. Эти пластины сочетают в своей структуре тонкую форму и сжимаемую подложку. Они состоят из нижней защитной пленки, несущего эластичного слоя, стабилизирующей пленки, светочувствительного рельефообразующего слоя и верхней защитной пленки. Для высококачественной флексографской печати такая многослойная структура печатной формы имеет много преимуществ.

Однако в случае применения химически активных красок, например, на основе этилацетата, необходимо использовать эластичные резиновые формы. Обычные формы, изготовленные из фотополимерных пластин, устойчивые к спиртам, не подходят для эфиросодержащих красок. Для этой цели можно использовать эфироустойчивые фотополимерные пластины.

Одна из особенностей флексографии состоит в том, что давление необходимо для печати и для выравнивания неровностей соприкасающихся поверхностей в процессе печатания. Эти требования технологические. И чем больше давление, тем лучше для достижения конечной цели. С другой стороны, чем выше давление, тем больше искажения геометрии печатающих элементов. Эти нарушения печатной формы, вследствие высокого давления приводят и к снижению качества оттиска – высокое растискивание, смазывание, неравномерное распределение краски на плашках. Высокое давление влияет на тиражестойкость печатной формы и может привести к ее расслаиваю. Понятно, что здесь необходим компромисс или новая идея.

При использовании обычных формных пластин, избыток давления частично поглощается ими. В результате деформации верхнего фотополимерного слоя печатной формы возникает растискивание, которое необходимо снизить, если печатаются высококачественные растровые работы.

Чтобы добиться этого, для печати на этикетках и упаковке используют тонкие пластины толщиной в пределах 1-го мм. В этом случае большая часть избыточного давления поглощается сжимаемой подложкой и таким образом, степень деформации печатающих элементов в зоне печатного контакта снижается благодаря способности подложки к сжатию, что приводит к значительному улучшению качества печати.

Термин «сжимаемость» («компрессионность») означает компенсацию давления посредством уменьшения в объеме. Точное восстановление подложкой первоначальных размеров оказывает эффект выравнивания нагрузки. Иными словами, применяемый для изготовления печатных форм для флексографии материал должен обладать способностью к высокоэластическим деформациям.

Сжимаемые гильзы, которые применяют в печати на упаковке, имеют поверхность, состоящую из компрессионного слоя, который не теряет своих свойств даже после нескольких лет использования. Эффект вспененной структуры в том, что значительная часть давления, действующего на форму, поглощается подложкой. Поэтому рельеф печатной формы сохраняется более стабильным, в то время как сжатый пеноматериал распрямляется до первоначальной высоты после прохождения зоны печатного контакта. Это позволяет выполнять растровые, штриховые и плашечные работы с одной формы.

Основные характеристики печатной формы это толщина, жесткость и твердость, которые тесно взаимосвязаны. Твердость одного и того же материала при уменьшении его толщины, увеличивается. В то же время разные материалы одинаковой толщины могут иметь разную жесткость. Более тонкие и жесткие печатные формы лучше передают растровую точку, но с ними труднее работать. Для гладкого запечатываемого материала при печати растровых изображений лучше использовать более жесткие формы, чем при печати штрихов и текста. Поэтому надо гибко использовать разные типы формных пластин при изготовлении печатных форм.

Таким образом, суть флексографии – это особенность печатной формы, все остальное работает на нее, усиливая положительные факторы. /1/

В заключении хочу сказать, что чтобы получить высококачественную печатную продукцию, необходимо согласовать между собой три фактора, а именно – выбор печатной формы, красочной системы и растрированного (анилоксового) валика. Выбор толстой или тонкой печатной формы, краски на водной основе или закрепляемой УФ-излучением и требуемого для однородной передачи краски на печатную форму растрированного валика являются решающими для качества печатного процесса.

3.3 Общие схемы изготовления печатных форм различными способами

Печатные формы для флексографии изготавливаются несколькими способами. Рассмотрим некоторые из них.

3.3.1 Негативное копирование

При негативном копировании используются фотополимерные пластины (рис. 1) различной толщины от 0,76мм до 6,5 мм и жесткости. Жесткость пластины зависит от ее толщины.

Структурная схема пластины

1- защитный слой;

2- жидкий светочувствительный фотополимерный копировальный слой;

3- адгезийный подслой;

4- полимерная подложка.

Первый этап процесса копирования – экспонирование (рис.2) обратной стороны формной пластины, которое выполняется через пленку-основу без применения вакуума /2/. Проводится УФ-излучением определенной длины волны (примерно 360 нм) для формирования основания будущих печатающих элементов, для образования активных центров, повышения светочувствительности и обеспечения правильной трапециевидной формы печатающих элементов/3/.

Схема изготовления печатной формы

Продолжительность экспонирования зависит от требуемой глубины рельефа и подбирается методом проб и ошибок.

Если репродуцируются мелкие точки и тонкие линии, необходим более плоский рельеф, для чего следует увеличить продолжительность предварительного экспонирования /2/.

Основное экспонирование является второй ступенью обработки при производстве фотополимерных печатных форм и должно производиться сразу же после экспонирования оборотной стороны.

Перед выполнением основного экспонирования с формной пластины необходимо удалить защитную пленку.

Главное экспонирование выполняется через негативную фотоформу. Рельеф формируется в результате полимеризации. На формную пластину копируются присутствующие на негативной фотоформе в виде прозрачных участков растровые точки, текст и тонкие линии. Внести изменения в получившуюся копию невозможно.

Сначала необходимо выполнить тестовое экспонирование, чтобы точно определить продолжительность засветки. Для этого нужны тестовые негативы /2/. С помощью тестов можно устранить различия в тоновых значениях и снизить риск неправильной оценки копии.

На продолжительность основного экспонирования влияют следующие факторы:

– площадь основания точки

– угол наклона стенки

– наличие сплошных участков с насыщенным цветом

Если время экспонирования слишком мало, на предварительно экспонированном с обратной стороны основании пластины не может сформироваться приемлемое основание рельефа, поскольку сквозная полимеризация отсутствует. Таким образом, образуется растворимая область, которая в дальнейшем вымывается вместе растровыми точками. Прежде всего, вымываются точки небольшого размера и тонкие линии.

Помимо того, что необходимо оптимальное формирование стенок рельефа, особое внимание следует уделять сплошным промежуточным областям изображения.

Сплошные насыщенные области, присутствующие на негативе, подвергаются наибольшему риску переэкспонирования, в результате чего такие области печатаются сплошной заливкой.

Процесс проявления заключается в удалении с помощью растворителя неполимеризованных участков формы. Вспомогательными в процессе вымывания являются различные механические приспособления, щетки или мягкие скребки.

Проявление ведется в 3 стадии:

Набухание полимера

Удаление полимера

Обмывание копии /3/

Процесс вымывания должен быть насколько это возможно коротким. Чем продолжительнее контакт с растворителем, тем глубже рельеф.

Если вымывание длится слишком долго, рельеф может быть поврежден, возможны даже признаки его отделения. Разрушение возможно и при неправильном выборе растворителя. Оптимальное время определяется опытным путем.

Сушка осуществляется в специальном сушильном шкафу.

Во время сушки вымывающий раствор, проникший в покрытие рельефа, испаряется под воздействием теплого воздуха при t0 40-60 С0. чем дольше время сушки, тем выше тиражеустойчивость формы и стабильность печати.

После сушки нужно выдержать флексографскую форму примерно в течение 12-15 часов при комнатной температуре, чтобы она полностью восстановила свои размеры. Рекомендуем оставлять пластину на ночь при комнатной температуре.

В процессе основного экспонирования в зависимости от характера изображения оказывается эффективным большее или меньшее количество света. В результате уровень полимеризации на отдельных участках изображения может оказаться недостаточным.

Поэтому проводится дополнительное экспонирование – экспонирование УФ-излучением (360 нм) всей поверхности формы при отсутствии негатива для полной полимеризации печатающих элементов формы и увеличения ее тиражестойкости.

Во время дополнительного экспонирования недостаточно полимеризованные зоны в полной мере связываются с получившимся рельефом, образуя единую по характеристикам и твердости печатную форму.

Финишинг - последняя ступень изготовления. Проводится в УФ-излучении (256 нм). Финишинг необходим для закрытия пор, что позволяет устранить липкость печатной формы и повысить стабильность свойств.

Недостаток этого способа - возможные искажения толщины штриховых и растровых элементов - при экспонировании рассеянным светом, а также - неточности экспозиции.

В 2000 году фирма DuPontпредложила технологию тепловой обработки отэкспонированных копий CyrelFast/3/.

Технология тепловой обработки - «сухой» способ изготовления флексографских печатных форм. Данная технология может быть реализована как в аналоговом, так и в цифровом варианте с получением всех преимуществ цифровой технологии. Технология тепловой обработки (FAST) предусматривает использование специальных фотополимеризующихся пластин из термореактивного фотополимера, который удаляют с пробельных элементов с помощью теплового воздействия.

Технологический процесс изготовления печатных форм аналогичен традиционному. Для получения скрытого изображения на фотополимеризующейся пластине используют традиционное оборудование. Пластину экспонируют в обычной копировальной раме. Новым является способ удаления незаполимеризованного материала с пробельных элементов, для чего используют специальный процессор. Пластину помещают на цилиндр в процессор, где под воздействием ИК-нагревателя происходит размягчение неэкспонированных участков и их удаление с пластины. Это происходит с помощью нетканого рулонного материала, прижимаемого к поверхности пластины с помощью резинового валика. Процесс удаления материала с пробельных участков формы занимает несколько минут, при этом достигается рельеф до 0,8 мм. Использование технологии тепловой обработки позволяет получать формы с помощью «сухой» обработки, при этом отсутствует процесс вымывания с использованием растворителей. При этом отпадает необходимость длительной операции сушки, и время изготовления печатной формы может быть сокращено до 25 %.

Недостатком технологии тепловой обработки является в настоящее время ограниченный по толщине ассортимент пластин, достаточно высокая стоимость нетканого материала и нерешенность вопросов переработки или утилизации загрязненного нетканого материала/4/.

3.3.2 Технологии СТР

Беспленочные способы изготовления флексографских печатных форм лазерной записью обеспечивают более резкие и плотные растровые точки и, в конечном счете, обеспечивают существенное улучшение качества печати за счет значительно большего градационного охвата и контраста изображения с лучшей проработкой светов. Тонкие негативные и позитивные штриховые элементы воспроизводятся с высокой точностью /5/.

По своей сути технология CtP представляет собой управляемый компьютером процесс изготовления печатной формы методом прямой записи изображения на формный материал. Этот процесс, реализуемый с помощью однолучевого или многолучевого сканирования, характеризуется высокой точностью, так как каждая пластина является первой оригинальной копией, изготовленной на основе одних и тех же цифровых данных. В результате удается повысить резкость точек, точность приводки и воспроизведения всего тонального диапазона исходного изображения, снизить растискивание растровой точки, а также значительно ускорить подготовительные и приладочные работы на печатной машине.

Изготовление флексографских печатных форм по технологии ComputertoPlate может осуществляться двумя способами: прямым лазерным гравированием флексографских форм и с использованием маскированных фотополимеров.

3.3.2.1 Технология прямого лазерного гравирования (LEP)

Технология прямого лазерного гравирования (LEP) предусматривает использование специальной полимерной пластины из несветочувствительного эластомера, имеющей твердость выше средней. В этой технологии сочетается высококачественный полимерный материал и быстрый способ его обработки с помощью лазера /4/.

Технология базируется на использовании современного и мощного лазера, например, CO2, который был признан наиболее подходящим для прямого лазерного гравирования.

Технология прямого лазерного гравирования включает в себя только одну операцию - пробельные элементы на пластине выжигаются ИК-лазером путем возгонки, после чего форма готова к печатанию (рис.3).


Схема прямой лазерной гравировки

D и f - апертура и фокусное расстояние линзы;

θ - расходимость луча; d0 - диаметр пятна

Хотя эта технология принципиально проста, она обладает целым рядом достоинств:

1) достигается экономия на оборудовании и материалах,

2) экономится время изготовления формы,

3) прямая передача данных из компьютера с помощью лазера позволяет практически исключить возможные ошибки.

Процесс изготовления формы сводится к следующему: пластину без всякой предварительной обработки устанавливают на цилиндр для обработки лазером. Пробельные элементы выжигаются сразу в процессе лазерного облучения.

В процессе обработки контролируется глубина рельефа и профиль растровых точек - т. е. вероятность потери мелких деталей сведена к минимуму. После гравирования с формы нужно удалить частички пыли, с помощью специального пылесоса или промыв проточной водой. Изготовленные печатные формы имеют повышенную тиражестойкость и долговечность, а также высокие изобразительные возможности. Время изготовления формы форматом А4 составляет около 1 часа.

В настоящее время технология прямого лазерного гравирования имеет ряд недостатков. Это ограниченный ассортимент пластин по толщине, высокая энергоемкость, необходимость удаления продуктов горения, необходимость периодической замены силовых элементов лазеров и устойчивость не ко всем видам печатных красок.

3.3.2.2 Косвенное лазерное гравирование

Изготовление флексографских форм по технологии CtP с применением маскированных фотополимеров получило широкое распространение в производстве высококачественной печатной продукции. В качестве основы маскированных фотополимеров используются фотополимеризующиеся композиции, хорошо зарекомендовавшие себя при аналоговом изготовлении печатных форм. Главной отличительной особенностью цифровых формных материалов является наличие тонкого (несколько мкм) масочного покрытия, поглощающего лазерное излучение. Это покрытие удаляется с поверхности формной пластины в процессе экспонирования инфракрасным лазером. В результате на поверхности пластины создается негативное изображение, заменяющее фотоформу при последующем экспонировании УФ-излучением. Поскольку маскированные фотополимеры разработаны на основе традиционных фотополимеров для флексографии, процессы их обработки одинаковы (рис.4).


Схема изготовления формы с помощью лазерной записи маски

После удаления лазером масочного слоя в местах, соответствующих печатающим элементам, экспонируется прозрачная подложка с целью создания основы фотополимерной формы. Экспонирование для получения рельефного изображения осуществляется через негативное изображение, созданное из масочного слоя. Затем проводится обычная обработка, состоящая из вымывания незаполимеризовавшегося фотополимера, промывки и доэкспонирования с одновременной сушкой и финишинг.

Сокращение технологического цикла изготовления форм за счет отсутствия фотоформ позволяет не только упростить допечатный процесс, но и избежать ошибок, связанных с использованием негативов:

Отсутствуют проблемы, возникающие вследствие неплотного прижима фотоформ в вакуумной камере и образования пузырей при экспонировании фотополимерных пластин;

Не существует потери качества, вызванного попаданием пыли или других включений между фотоформой и пластиной;

Не происходит искажения формы печатающих элементов из-за низкой оптической плотности фотоформ;

Отсутствует необходимость работы с вакуумом;

Профиль печатающего элемента оптимален для стабилизации растискивания и точной цветопередачи /6/.

При экспонировании монтажа, состоящего из фотоформы и фотополимерной пластины, в традиционной технологии свет, прежде чем достичь фотополимера, проходит через несколько слоев: серебряную эмульсию, матированный слой и основу фотоформы, пленку вакуумной копировальной рамы. При этом свет рассеивается в каждом слое, а также на границах слоев. В результате растровые точки получают более широкие основания, что приводит к увеличению растискивания. При экспонировании лазером маскированных флексографских пластин нет необходимости создавать вакуум, к тому же здесь отсутствует пленка. Практически полное отсутствие рассеяния света означает, что изображение, записанное с высоким разрешением на слое маске, точно воспроизводится на фотополимере /7/.

Таким образом, к достоинствам печатных форм, изготовленных по технологии CtP и вытекающих из особенностей проведения формного процесса, можно отнести следующие:

1) экспонирование проводится без вакуума;

2) отпадает необходимость изготовления негатива и применения специальной матовой фотопленки;

3) отсутствуют проблемы неплотного прилегания негатива при экспонировании из-за неполного удаления воздуха, образования пузырей или попадания пыли и прочих включений;

4) не происходит потерь мелких деталей из-за недостаточной оптической плотности изображения и нечеткого края точек.

Таким образом, рассмотрев данные методы изготовления форм можно сказать, что одним из наиболее выгодных является способ косвенного лазерного гравирования. Т.к. не только сокращается время технологического цикла, но и отсутствуют ошибки, связанные с использованием негативов, а также не происходит потерь мелких деталей из-за недостаточной оптической плотности изображения. Чего нельзя сказать о негативном копировании, главным достоинством которого является использование пластин различной толщины. При этом данный способ имеет много недостатков. Т.к. глубина рельефа выбирается опытным путем, существует риск переэкспонирования, искажения толщины элементов, что ведет к неточности экспозиции. Однако главным недостатком является большие трудо- и времязатраты. Хотя в 2000 году был предложен «сухой» способ изготовления, позволивший сократить время изготовления на 25%, из-за ограниченного ассортимента пластин, высокой стоимости материалов и их утилизации, данный способ не получил широкого применения.


4. Выбор технологии, оборудования и материалов для изготовления образца

4.1 Выбор технологического процесса

При выборе оптимальной технологии для изготовления данного образца следует учитывать формат изделия, его область применения, разрешающую способность, тираж и другие факторы, позволяющие получить изделие с меньшими экономическими затратами и высокого качества.

Таблица-2 Сопоставление выбранных технологических процессов

Назначение процесса

Возможные

варианты процессов

Выбранный вариант

Обоснование выбранного

варианта

Изготовление печатной формы

Негативное копирование

Косвенная лазерная запись

Прямое лазерное гравирование

Прямое лазерное гравирование Использование данного способа изготовления печатной формы позволяет отказаться от фотоформы. Кроме этого повышается экологичность и производительность процесса. Печатные элементы получаются с прямоугольным цоколем, что дает возможность значительно повысить точность проявления детали без потери тиражеустойчивости. Тиражеустойчивость более 1 млн. оттисков, разрешающая способность 12 – 70 лин\см

4.2 Выбор основного оборудования

Оборудование выбирается с учетом его производительности, качества выполнения технологического процесса, степени автоматизации, удобства обслуживания, ориентировочной стоимости и энергоемкости /8/.

Таблица-3 Сопоставление выбранного оборудования

Наименование процесса или операции Виды (марки) возможного оборудования для выполнения процесса (операции) Выбранное оборудование и его техническая характеристика Обоснование выбора оборудования
Изготовление печатной формы

FlexPose!direct 250L

Формат 1500/1950 х 145 х 4500

Глубина гравирования контролируется оператором

Совместимость со всеми типами пластин

Лазер 500 W

Morpheus 611X предоставляет возможность прямого лазерного гравирования флексографских печатных форм. Это универсальная, высокоточная система гравирования по резине и полимерам с использованием одного лазерного луча для определения точечного изображения. Эта установка хороша для узкорулонной печати упаковки, защитной печати а также, для печати по ткани и обоям. Morpheus может быть оборудован дополнительным YAG лазером для LAM технологии.
Печать тиража

Mark Andy 2200

OFEM COLUMBUS 10

NIKELMAN 230 MULTI TWIN

Машина позволяет осуществлять высоколиниатурную полноцветную печать в широком дипазоне материалов, начиная от полимерных пленок и заканчивая легким картоном. Ширина запечатываемой области совпадает с максимальной шириной рулона, что обеспечивает максимальную производительность и минимизирует отходы.

Макс. ширина рулона, мм 178, 254, 330, 432

Макс. кол-во печатных секций -12

Длина запечатываемой поверхности, мм 140-610

Количество секций вырубки/высечки -3

Толщина материала (мин/макс.), мкм 30-300

Парафиниро- вание

ПРА-50.000.СБ

Для парафинирования бумаги

Размеры рулона, мм: ширина - 840 - 900; Производительность, м/мин - 180.


4.3 Выбор материалов

При выборе основных материалов надо руководствоваться особенностями продукта, способом печати и послепечатной обработки, дизайном. А также сравнивать экономические параметры расходования материалов, их стоимость, условия хранения.

Таблица-4 Сопоставление выбранных материалов

Наименование процесса Возможные материалы Выбранные материалы (с указанием марок, ГОСТ, ОСТ и т.д. и обоснование выбора)
Изготовление печатных форм
печатная бумага

ГОСТ 16711-84

Для внутренней подвертки кондитерских изделий

UV Rainbow ZU-V 31

Bargoflex Seria 53-20

AKVAFIX– 123 Водорастворимая краска. Имеет четыре разных модификации для печати на тонкой карамельной бумаге, упаковке для пищевых продуктов и производства конвертов благодаря малой деформации бумаги от 25-100 г/м2., можно применять в работе как с формами из натурального каучука, так и с фотополимерными материалами.

4.4 Технологические инструкции

1. Создание макета:

· обсуждение и проработка идеи дизайнером

· изготовление и утверждение эскизов

· изготовление и утверждение оригинал-макета

2. Создание цифрового оригинала:

· создание законченного художественного оформления проекта

· учитываются все производственные фазы выполнения заказа

3. Пробный отпечаток:

· утверждение пробы заказчиком

4. Изготовление печатной формы:

· в виде формного материала используется несветочувствительный эластомер;

· запись оцифрованной информации оригинала с помощью ИК-лазера путем возгонки, выжигаются пробельные элементы – 3-5 мин;

· оставшаяся сажа отсасывается специальным пылесосом;

· промывка проточной водой – 12-18 мин;

· сушка – 10 мин;

· дополнительное экспонирование – 3-10 мин;

· финишинг – 10 мин;

· контроль качества формы;

5. Приладка печатного станка;

6. Печать тиража;

7. Визуальный контроль стабильности цветопередачи;

8. Послепечатная обработка:

· отбраковка тиража;

· парафинирование;

· упаковка;

9. Сдача тиража.


5. Расчет количества печатных форм на тираж

Расчет количества печатных форм для заданного формата:

где nn– число полос (20);

к – красочность изделия (4+0);

nпеч.ф. – число полос на печатной форме (20 этикеток на 1 форме).

Фпеч.ф. = 4 формы

Расчет количества планов-монтажей:

где nмфф – число полос на монтажной фотоформе.

1 план-монтаж

Расчет количества тиражных печатных форм:

где-N– число комплектов одинаковых печатных форм.

где Т – тираж издания, тыс. экз.

Тст – тиражестойкость печатной формы в тыс. экз. (Nокругляется в сторону увеличения до целого числа).

где к – красочность издания

40 тиражных печ.форм


Заключение

Несмотря на "туманное" прошлое и спорное качество, флексография идеально подходит для изготовления большинства типов упаковки. Кроме присущей флексографии гибкости в выборе носителей еще одним ее преимуществом является цена. Фотополимерные флексографские формы гораздо дешевле, чем металлические формы для глубокой печати, и это только одно из слагаемых относительной дешевизны флексографии.

Еще одним преимуществом флексографии является ee способность оперировать формами различного размера, что позволяет оптимизировать использование материалов для упаковки, в то время как фиксированные размеры офсетных форм часто приводят к повышенному проценту отходов

В ходе данной работы были проанализированы три способа изготовления ПФФП. На основании данного анализа был выбран оптимальный метод изготовления сочетающий в себе экономичность и качество. Также были предложены материалы и оборудование подходящие к данной технологии.

При рассмотрении главного вопроса данной курсовой работы было выявлено, что на сегодняшний день наиболее выгодными способами являются технологии CTP.


Список использованных источников

1/Стефанов С. «ФЛЕКСОГРАФИЯ–кентавр полиграфии»/ Publish.- 2001.- №1.

2/ Митрофанов В. «Техника флексографской печати»/ М.- 2001.- 208 с.

3/Дмитрук В. «Лекции по ТФП»

4/Сорокин Б. «Системы CtP в флексографской печати»/ Copyright.- 2005.- №5.

5/ Филин В. «Упаковочная полиграфия в начале нового тысячелетия»/ КомпьюАрт.- 2000.- № 6.

6/ «Основы флексографии»/ Флексо Плюс.- 2001. - №1.

7/ Марикуца К. «Виват, Королева, или определение параметров допечатного процесса во флексографии»/ Флексо Плюс.- 2002.- №5.

8/ Каргапольцев С. «Формное производство: выбор оборудования»/ Флексо Плюс.- 2000.-№1.

Формы офсетной плоской печати (ФОПП)

офсетный печать сырье форма

В конце 70-х - начале 80-х годов XIX ст. разрабатывается принципиально новый вид плоской печати - офсетный. В отличие от литографии, в ОПП изображение с формной поверхности переносится на запечатываемый материал через промежуточную эластичную (резиновую) поверхность.

Развитие ОПП проходило путем замены литографского камня металлическими пластинами (сначала цинковыми, а потом алюминиевыми и стальными). ОПП дала возможность значительно повысить производительность работы и качество печатной продукции.

Оборудование для изготовления ФОПП в современной полиграфической промышленности занимает одно из ведущих мест по количеству выполняемых технологических операций и по своей номенклатуре. Печатные формы изготовляются фотомеханическими, лазерными и электрографическими способами как на отдельных установках, так и на поточных линиях. Эти способы постоянно усовершенствуются, что предопределяет дальнейшее развитие оборудования для изготовления фотографических и печатных форм. Наблюдается тенденция создания оборудования по модульному принципу построения в объединении с устройствами вычислительной техники, которое обеспечивает автоматизацию технологических процессов.

На лежащих в одной плоскости пробельных и печатных участках ФОПП имеют разные физико-химические свойства относительно печатной краски и увлажняющего средства. В плоской печати используется известный эффект системы жир-вода, который заключается в том, что вода не способна смачивать жиры. Благодаря этому свойству на форме плоской печати получаются гидрофильные (олеофобные) поверхности, которые удерживают влагу и водные растворы, и гидрофобные (олеофильные), которые удерживают печатную краску (рис. 1). Эти участки создаются изменением свойств поверхности путём нанесения на нее покрытия или влиянием на структуру его материала.

Рис. 1. Схемы изготовления офсетных печатных форм: монометаллической негативным (а) и позитивным (б) копированиями, а также полиметаллической травлением металла на пробельных элементах (в): 1 - алюминиевая пластина; 2 - копировальный слой; 3 - гидрофильная пленка; 4 - краска; 5 - сталь; 6 - медь

ФОПП в зависимости от количества используемых металлов (одного или нескольких) для создания пробельных и печатающих элементов можно разделить на две основных группы: моно- и полиметаллические. Наиболее часто применяются формные основы из алюминия (или его сплава), углеродистой или нержавеющий стали. Поверхность алюминиевой или стальной пластины монометаллических форм остается без изменений, а в полиметаллических формах на нее наращивают слой меди (на нем дальше создаются печатающие элементы), а сверху его - слой хрома или никеля (для создания пробельных элементов).

В обоих случаях на формную пластину наносят копировальный слой - негативный (например, хромированный поливиниловый спирт ПВС или диазосмолу) или позитивный (производные ортонефтехинондиазидов) в зависимости от способа копирования. На этот слой контактным способом копируют растровую или штриховую фотоформу: негатив или диапозитив.

Позитивный способ изготовления ФОПП обеспечивает большую точность передачи изображения и стойкость печатающих элементов в процессе печатания.

Для изготовления ФОПП используются алюминий, магниевый сплав алюминия, углеродистая и нержавеющая стали. Показатели прочности этих металлов приведены в табл. 1.

Из механических свойств металлов, наиболее ответственных за эксплуатационную надежность в процессе печатания, можно выделить прочность, пластичность, сопротивление усталости и износостойкость. Прочность металла характеризуется максимальным условным напряжением, которое выдерживает металл при растяжении до разрушения; пластичность определяется как относительное удлинение при растяжении. Сопротивление усталости характеризуется максимальным напряжением, которое выдерживает материал, не разрушаясь при повторно-переменных нагрузках. Износостойкость металла может оцениваться по объему сошлифованого металла с учетом условий вытирания. В табл. 1 значения износостойкости стали и сплава алюминия приведены относительно износостойкости чистого алюминия.

Кроме названных металлов, при изготовлении офсетных форм используются медь, никель и хром в виде электролитических осадков толщиной 1…8 мкм.

Поверхность офсетных формных пластин может соответствовать таким требованиям: быть очень твердой и износоустойчивой для обеспечения тиражестойкости пробельных элементов формы; иметь определенную микрогеометрию, шероховатость для обеспечения высокой адгезии печатающих элементов формы; хорошо смачиваться копировальным слоем для обеспечения высокой адгезии между слоем и поверхностью пластины.

Формы, в которых печатающие элементы создаются на меди, а пробельные на каком-либо другом металле (хроме, никеле, алюминии, нержавеющей стали), традиционно называются биметаллическими.

Таблица 1. Показатели прочности металлов, которые применяются как основа офсетных форм

На отечественных полиграфических предприятиях до появлению предварительно сенсибилизированных (очувствленных) пластин использовались шесть разных вариантов конструкций металлических форм. На основу (углеродистая сталь, алюминий) наносили гальванопокрытия: сначала никеля (4 мкм), потом меди (10 мкм), хрома (1 мкм) или никеля (4 мкм). Полученные полиметаллические пластины служили основой при изготовлении биметаллических печатных форм способом химического или электрохимического (анодного) травления верхнего покрытия на печатающих элементах до слоя меди.

Таким образом, по конструкции полиметаллических пластин, которые применялось для нанесения копировального слоя, до последнего времени существовали такие варианты их изготовления:

1) углеродистая сталь - (никель) - медь - хром;

2) углеродистая сталь - (никель) - медь - никель;

3) алюминий - (никель) - медь - хром;

4) алюминий - (никель) - медь - никель;

5) алюминий - (никель) - медь;

6) нержавеющий сталь - (никель) - медь.

В скобках, указано гальваническое покрытие никеля, которое называется подслоем и наносится для улучшения сцепления меди с углеродистой сталью и алюминием. Кроме подслоя никеля, на поверхность алюминия наносится еще один подслой - химически осаждённого цинка, который оказывает содействие крепкому его сцеплению со следующим гальваническим покрытием.

К началу 90-х годов в бывшем СССР в формных процессах использовались в основном офсетные формы на биметаллических предварительно сенсибилизированных пластинах. Процесс производства этого типа пластин был довольно сложным. Наращивание гальваническим способом на стальную основу слоёв меди и хрома, которые в процессе изготовления форм становились соответственно печатающими и пробельными элементами, необходимо было контролировать особенно тщательно. Любая погрешность могла привести к явному браку, который мог определиться лишь на стадии изготовления форм или даже печати. Некачественное декопирование стальной основы могло привести к отслоению от ее рабочих слоёв хрома и меди. Нарушение в рецептуре электролитов или режимов подачи электрического тока могли привести к такому дефекту, как мягкий или пористый хром, который в дальнейшем влиял на стойкость пробельных элементов печатной формы. Состав и равномерность нанесения светочувствительного слоя также постоянно следовало контролировать.

Тем не менее, все эти сложности и неудобства, значительная материало- и энергоёмкость были оправданы лишь одним обстоятельством. Тиражестойкость форм, изготовленных на биметаллических пластинах, превышала 1 млн. отпечатков.

Применялся Лиственицкий монометал (Россия) и чешский «Rominal». Инструкции о процессах офсетной печати по сей день базируются на процессах изготовления форм на этих пластинах, хотя качественная высоколиниатурная цветная печать при работе с ними недоступна.

В Украине до сих пор нет своего производства предварительно сенсибилизированных офсетных пластин, но ведутся работы по их созданию. В связи с этим полиграфические предприятия могут воспользоваться предложениями разных фирм-производителей предварительно сенсибилизированных пластин, ассортимент которых на мировом рынке постоянно увеличивается. Свыше 50 фирм мира изготовляют сегодня предварительно сенсибилизированные пластины негативного и позитивного копирования, моно- и полиметаллические толщиной 0,1…0,5 мм, форматом от 370х450 до 1420х1680 мм для печати малых, средних и больших тиражей на бумажной, пленочной и металлической основах.

Сейчас на рынках стран СНГ активно работают такие производители пластин, как «Agfa», «Polichrome», «Du Pont», «Lastra», «Pluri Metall», «Horsell» и др. Все ведущие фирмы-производители имеют в своем ассортименте несколько разных типов пластин, которые различаются по назначению, типу копирования (позитивные или негативные), тиражестойкости (пробная и малотиражная печать, для високотиражных работ), способом экспонирования (традиционный в ультрафиолетовых лучах, проекционный, лазером по технологии «computer-to-plate»).

Любая из фирм-производителей представлена у нас одной-двумя марками офсетных пластин, которые являются самыми универсальными. Как правило, это пластины позитивного копирования, которые экспонируются в ультрафиолетовом (УФ) излучении с длиной волны 400…430 нм, с электрохимическим зернением поверхности алюминия. Они могут использоваться как на листовых, так и на рулонных машинах. Их тиражестойкость лежит в границах 100…200 тыс. краскоотпечатков. Стоимость этих материалов практически одинаковая. К ним можно отнести такие известнейшие марки: «Ozasol PSS (Аgfa)», «Virage (Polichrome)», «Spartan (Du Pont)», «Libra Gold (Horsell)», «Futura Oro (Lastra)», «Micropos (Pluri Metall)».

Требования к изготовлению пластин. Прежде всего, следует отметить высокие требования, которые относятся к алюминию. Количество примесей других металлов не должна превышать 0,5%, особые требования - к твердости и сопротивлению на разрыв. Неровности поверхности не должны превышать 3 мкм. Алюминиевое полотно, размотанное из рулонов массой в несколько тонн, в зависимости от его ширины проходит несколько стадий. Сначала оно очищается в щелочной среде. Потом поступает у ванны, где происходит электрохимическое зернение поверхности. Раньше при производстве офсетных пластин зернение проводили механическим способом. Сейчас практически отказались от этого способа зернения (одним из исключений являются пластины «SPLX4» фирмы «Pluri Metal), поскольку он не дает нужной равномерности. Также всегда надо было помнить о направлениях движения щеток, что влияло на поведение увлажняющего раствора на пластине при печатании.

Для чего же необходимое зернение? Поверхность алюминия, которая проходит обработку зернением, может поглощать количество воды в несколько десятков раз больше, чем гладкая поверхность. Высокая капиллярность поверхности необходима для достижения нужного баланса краска - увлажняющий раствор при офсетном способе печати. Для рулонных печатных машин, которые работают на высоких скоростях, нужна будет более развитая поверхность формного материала, чем при работе на листовых машинах. Пластины с высшей степенью зернистости наиболее приспособлены для работы в регионах, где наблюдаются значительные колебания температур. Также степень зернистости влияет на разрешающую способность форм.

Электрохимическое зернение проводится в кислоте, как правило, азотной или соляной (в зависимости от необходимой степени развития поверхности). Значение напряжения электрического тока, который проходит через кислоту, достигает нескольких десятков тысяч вольт. В частности, пластины «Ozasol P5S» зернятся в азотной кислоте и различаются более развитой мелкопористой структурой поверхности алюминия, в отличие от пластин Р51 того же производителя, обработка которых происходит в соляной кислоте. Поверхность Р51 имеет большую структуру.

Офсетные формные пластины фирмы «Аgfa». Одними из популярнейших производителей монометаллических офсетных пластин профессионалы считают предприятия «Kalle-Arbett», которые принадлежали до недавнего времени немецкому химико-фармакологическому концерну «Hoechst» (г. Висбаден).

Здесь впервые (еще в 1946 г.) были разработаны предварительно сенсибилизированные пластины марки «Ozasol» негативного и позитивного копирования. Многолетняя работа специалистов дала прекрасный результат - пластины оказались простыми и надёжными в использовании. Они обеспечивают высокое качество печатной продукции.

Важным фактором, который повлиял на дальнейшее развитие и расширение рынка формных пластин «Ozasol», стало приобретение в 1995 г. бельгийской корпорацией «Agfa-Gevaert» у концерна «Hoechst» права на производство пластин. В 1997 г. фирма «Agfa» приобрела аналогичного права в компании «Du Pont». В результате корпорация «Agfa-Gevaert» стала основным производителем офсетных пластин в западном полушарии.

Пластины «Ozasol» выпускаются под торговыми марками Р (позитивные) и N (негативные). Их ассортимент очень большой. Он включает индексированные цифрами и буквами материалы разного назначения - пробного, и мало- и многосерийного производств, разных уровней воспроизведения информации, для листовой и рулонной, газетной и коммерческой, пробной печати, для книжной продукции, использования в лазерных рекодерах.

Универсальными (пригодными для использования в рулонных и листовых машинах) считаются пластины позитивного копирования Р5S, которые также предназначены для печатания средних и больших тиражей и рекомендуются для печати методом стохастичного растрирования Agfa Сгіstal Raster. Они получили признание во всем мире, поскольку воссоздают широкий диапазон изобразительной информации и мелкие штриховые элементы, обеспечивают стабильность формных и печатных процессов при оптимальных условиях печатного контакта (ПК).

Формы, изготовленные с использованием пластин Р5S, отвечают жестким требованиям по качеству печати, обеспечивают высокую тиражестойкость, низкую энергоемкость (непродолжительное экспонирование - от 40 с). Их применение является экономически выгодным и экологически приемлемым (затраты слабощелочного проявителя - 100…120 г. на 1 м 2 площади пластины).

На пластинах «Ozasol» любого типа изображения формируется гидрофобным копировальным слоем. Он активно отталкивает воду и прекрасно воспринимает печатную краску. Гидрофильные участки пробельных элементов формируются на специальном слое, созданном на алюминиевой основе пластины. Копировальный слой является композицией на основе водонерастворимых пленкообразующих смол с диазосоединениями или фотополимеризационной композицией. Он содержит также микропигментные частички, которые облегчают визуальный контроль и, выступая над поверхностью (дисперсионность абразивного пигмента - около 4 мкм), обеспечивают исключительные условия для быстрого достижения вакуума в копировальной раме и создания отличного контакта между формой и светочувствительным слоем во время экспонирования. Плотное равномерное прижатие в момент наращивания вакуума обеспечивается благодаря выходу воздуха своеобразными «коридорами» между пигментными частичками.

Используя пластины «Ozasol», применяют разные способы экспонирования: традиционными УФ лучами в копировальных рамах через негатив или позитив (изготовленные классическими методами или по технологии «computer-to-film»), лазером (по технологии «computer-to-plate» или «computer-to-press»).

Монометаллические офсетные формные пластины (Р) со светочувствительной композицией на основе ортонефтехинондиазидов являются позитивно работающими, то есть рассчитанными на копирование монтажей позитивов (рис. 2.). Во время экспонирования (Т2) (пик спектральной чувствительности располагается в зоне 370 нм) лучевой поток инициирует фотохимическую реакцию на освещённых участках копировального слоя. Диазосоединение разлагается. Поверхность проэкспонированных участков копировального слоя приобретает гидрофильность, которая усиливается во время проявки (Т4) в водных растворах фосфатов или силикатов.

Остатки разрушенного копировального слоя удаляются из пробелов во время промывки (Т5). Замеченные на поверхности пробельных участков пятна, следы от липкой ленты, лишние пометки удаляют раствором для корректуры копий (Т7). Если необходимо обеспечить тиражестойкость печатных форм для тиража, больше 100 тыс. отпечатков, то рекомендуется выполнить термообработку (Т9-Т11). Непродолжительный нагрев (до 6 мин) при температуре 250°С в несколько раз повышает прочность и износостойкость основы печатающих элементов. Заключительные операции по изготовлению офсетных печатных форм на основе пластин «Ozasol» - нанесение тонкого защитного слоя (гуммирование) и сушка (Т12, Т13). Технические характеристики стандартных универсальных пластин положительного копирования Р5S приведены в табл. 2. Светочувствительный слой пластин негативного копирования является композицией на основе диазосоединений или фотополимеров. Соответственно, кроме светочувствительного диазосоединения, в композицию входят связывающий (смола) и контрастный (краситель) агенты. Фотополимерный копировальный слой содержит инициирующую систему, чувствительную к УФ свету, который состоит из фотоинициатора, чувствительного агента и мономеров, которые способны образовывать полимеры под влиянием полимеризации.

Во время экспонирования (Т2) слоя на основе диазосоединения инициируется цепная реакция, которая приводит к образованию макромолекул.

Рис.

Таблица 2. Технические характеристики монометаллических офсетных форм на основе алюминиевых пластин «Оzаsоl Р5S»

Показатель

Обозначение

Номинальное значение

Минимальный размер растровых точек (для изобразительной продукции)

Разнотолщинность форм одного комплекта для пластин толщиной 0,15…0,3 мм

Разрешающая способность

Выделительная способность

Тиражестойкость:

тис. отпечатков, min

без термообработки

с термообработкой

Шероховатость поверхности

Отклонение в передаче тональности

Полнота проявки копии

Полностью проявленные поля с Dшк = 0,30…0,75 Б

Искажение размеров штрихов при их ширине:

Светочувствительный компонент фотополимерного слоя абсорбирует энергию облучения и передает ее фотоинициатору, предопределяя образование радикалов, что приводит к началу полимеризации. Таким образом, на экспонированных участках копировального слоя формируется структура пространственносшитого полимера. Непроэкспонированные части копировального слоя растворяются и вымываются проявителем (Т4).

Офсетные монометаллические пластины фирмы «Polichrome-Poar». Международная компания «Kodak-Polichrome Grafiks» - всемирно известный поставщик офсетных формных пластин. В ассортименте фирмы - широкий спектр офсетных формных пластин разнообразных направлений применения и технологических возможностей.

Она выпускает предварительно сенсибилизированные алюминиевые офсетные пластины РР-1, которые успешно используются на предприятиях Украины.

Алюминиевые предварительно сенсибилизированные офсетные пластины типа РР-1 предназначены для изготовления высококачественных офсетных форм методом позитивного копирования для листовых и рулонных машин. Подготовка поверхности основы включает электрохимическое зернение с оксидированием и наполнением оксидной пленки, создание специального гидрофильного подслоя. Этим обеспечиваются высокая тиражестойкость и стабильность гидрофильных свойств пробельных элементов.

Среднее значение микронеровностей поверхности алюминия (показатель шероховатости) составляет 0,4…0,7 мкм, алюминиевый прокат содержит 99,5% алюминия. Оптимальная масса 1 м 2 анодированной пленки составляет 2,7 г с допустимыми отклонениями ±15%.

Оптимальная масса 1 м 2 копировального слоя равняется 1,9…2,1 г. Пластины имеют высокую разрешающую способность, которая дает возможность воссоздавать размер штриха на копии шириной 10…12 мкм; 2- и 99%-ные растровые точки.

Показатель светочувствительности пластин РР-1 в 1,5…2 раза выше сравнительно с пластинами УПА-1 (ДОЗАКЛ), что оказывает содействие сокращению времени экспонирования. Цветной контраст между печатающими и пробельными элементами более заметный, чем в пластинах УПА-1 и ROMINAL. В состав копировального слоя РР-1 входит яркая синяя краска. Это значительно облегчает корректирование и контроль качества копий.

Пластины РР-1 имеют специальный гидрофильный подслой. Они не требуют традиционной обработки гидрофилизирующим раствором, который содержит ортофосфорную кислоту (травление). Главное - правильно выбрать время экспонирования и обеспечить полную проявку копии. После экспонирования надо проявить пятое поле полутоновой сенситометрической шкалы СНШ-К. Производственные испытания показали, что тиражестойкость пластин достигает 80…100 тыс. отпечатков без термообработки. Для увеличения тиражестойкости пластин РР-1 в 2…2,5 раза можно применять термообработку при температуре 220°С на протяжении 7…10 мин. В этом случае после проявления перед выжиганием на форму наносится специальный раствор, который предотвращает окисление пробельных элементов.

Кроме того, во время испытаний установлены такие преимущества пластин РР-1:

хорошее удерживание влаги на формах во время печатания;

быстрое создание оптимального баланса «краска-вода»;

простота и стандартность процесса изготовления офсетных форм;

стойкость копировального слоя к действию увлажняющего раствора, который содержит спирт.

Использование пластин фирмы «Polichrome-Poar» дает возможность повысить качество печатной продукции, тиражестойкость, обеспечить стабильность копировального и печатного процессов, значительно уменьшить производственные затраты.

Большинство фирм-производителей пластин поставляют также формное оборудование, лучшие образцы которого обеспечивают равномерность накаливания ламп при экспонировании и температурный режим при проявке в автоматическом режиме. Некоторые компании имеют собственные производства такого оборудования («Lastra»), другие сотрудничают с известными машиностроительными фирмами (например, фирма «Hoechst» работала с копировальными рамами «Зак» и проявляющими процессорами «Аякс»).

Все изготовители пластин производят также собственные химикаты для изготовления форм и работы с ними во время печати. Наилучшие результаты естественно гарантируются при использовании фирменных химикатов. Тиражестойкость форм, как правило, превышает 100 тыс. отпечатков. К наиболее тиражестойким формам принадлежат формы, которые изготовляются на основе пластин фирмы «Futura Orо», которые при правильном изготовлении форм и хорошо налаженном печатном оборудовании гарантируют печать тиражей от 200 до 250 тыс. отпечатков. Пластины с аналогичными показателями есть и в других формах («Ozasol Р71»), но их стоимость высшая сравнительно с «Futura Orо».

Показатель тиражестойкости форм можно увеличить больше, чем в 2 раза, если использовать термообработку, но специализированное оборудование для термообработки пластин стоит очень дорого. Некоторым большим типографиям, которые печатают периодические издания большими тиражами, этикеточную продукцию и упаковку, бывают нужны формные материалы, которые отличаются высокой тиражестойкостью. При использовании стандартных офсетных пластин нужно делать выбор между приобретением термопечи и изготовлением нескольких комплектов форм для печати одного тиража.


Министерство образования Российской Федерации

Факультет: Полиграфической техники и технологии

Форма обучения: очно-заочная

Курсовой проект
Дисциплина: Технология формных процессов

Тема: Разработка технологии изготовления печатных форм плоской офсетной печати по схеме «компьютер – печатная форма»

Студент: Чернышева Е.А.
Группа ВТпп-4-1
Руководит ель: Надирова Е.Б.

Москва
2011
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПЕЧАТИ им.И.Федорова
Факультет полиграфической техники и технологии

Специальность: Технология полиграфического производства
Форма обучения: очно-заочная
Кафедра: Технология допечатных процессов

ЗАДАНИЕ
на выполнение курсового проекта
Студенту (ке) ______________________________ курса _______________________группы
(Ф.И.О.) ______________________________ ______________________________ _________
1. Дисциплина ______________________________ ______________________________ ____
2. Тема проекта ______________________________ ______________________________ ___
3. Срок защиты проекта ______________________ ______________________________ ____
4. Исходные данные по проекту ___________________ ______________________________

5. Содержание проекта ______________________ ______________________________ _____
______________________________ ______________________________ _________________

6. Литература и прочие документы, рекомендуемые студенту для изучения: ____________
______________________________ ______________________________ _________________

6.1. Номера источников по методическим указаниям ____ ___________________________
6.2. Дополнительные источники ______________________________ ___________________

7. Дата выдачи задания
«___» __________ 2011 г.

Руководитель проекта ______________________________ ________________________
(уч. звание, степень, Ф.И.О, подпись)

Задание принял к исполнению ______________________________ ___________________
(подпись, дата)

Содержание
Реферат 4
Введение 5
1. Техническая характеристика и показатели оформления издания 6
2. Общая технологическая схема изготовления изделия 7
3. Технология формного процесса, общая схема 9
4. Оборудование, материалы, программное обеспечение 12
5. Контроль качества готовой продукции 13
6. Карта технологического процесса 16
7. Спуск полос 17
8. Рентабельность, объем работ и трудоемкость 18
Заключение 19
Список используемой литературы 21

Реферат
Цель работы: Разработка технологии изготовления печатных форм плоской офсетной печати по схеме «компьютер – печатная форма».
Условные обозначения:
ТОИИ – технология обработки изобразительной информации.
ТОТИ – технология обработки текстовой информации.
ЛЭУ – лазерное экспонирующее устройство.
Содержание работы: 19 страниц, 2 схемы, 2 рисунка.

Введение
Формные процессы представляют собой комплекс технологических операция, основанных на использовании аналоговых и цифровых технологий изготовления печатных форм, которые являются вещественными носителями графической информации, предназначенной для полиграфического воспроизведения.
При разработке данного курсового проекта преследовались такие цели, как: закрепление и расширение знаний в рамках дисциплины, приобретение навыков в процессе работы с научно-технической литературой и электронными источниками информации, развитие навыков пользования справочной и нормативно-технической документацией по полиграфической технике и технологии, а также по издательским процессам, получение первоначальных навыков по проектированию и расчету формного процесса.
Несмотря на многообразие способов получения печатной продукции, способ плоской офсетной печати занимает лидирующую позицию. Это связано с возможностью воспроизводить одно- и многоцветные изображения любой сложности с большой графической, градационной точностью и точностью цветопередачи с применением растровых структур с линиатурой до 120 лин/см. Этот способ позволяет печатать издания на бумагах различной массы при использовании большого разнообразия методов изготовления печатных форм. Способ также характеризуется высокой степенью автоматизации формного и печатного процессов, хорошими экономическими показателями, высокопроизводительным печатным оборудованием.


1. Техническая характеристика и показатели оформления издания

Наименование показателя и характеристик Значение показателя
в издании, принятом за образец в издании, принятом к разработке
1 2 3
Вид издания: - по целевому назначению
- по знаковой природе информации
- по периодичности


учебное пособие тексто-изобразительное
непериодичное


учебное пособие тексто-изобразительное
непериодичное

Формат издания: - заявленный формат
- произведение ширины на высоту
- доля бумажного листа


80х98
195х255 16

80х98
195х255 16
Объем издания: - в физических печатных листах
- в бумажных листах
- в страницах


19 9,5
304

19 9,5
304
Тираж издания (тыс.экз.) 2500 2500
Полиграфическое оформление
- красочность издания и его составных элементов
- характер внутритекстовых изображений, линиатура растрирования
- площадь иллюстраций в полосах и в процентах ко всему объему
- общий объем текста в полосах
- способ печати
- вид используемой печати и тип печатных красок


растровые
60 лин/см
60%
183
121
офсетный
книжный блок: офсетная
обложка: мелованная



4+4 (книжный блок) 4+0 (обложка)
растровые
60 лин/см
60%
183
121
офсетный
книжный блок: офсетная
обложка: мелованная

краска: для офсетной листовой печати
Конструкция издания
- количество тетрадей
- количество страниц в одной тетради
- количество и характер дополнительных элементов
- способ фальцовки тетрадей
- способ комплектовки блоков
- тип и конструкция обложки, оформление


19
16
обложка
3-х сгибная
подборка


19
16
обложка
3-х сгибная
подборка
тип 3, бумага 175 г/м 2 мелованная, 4+0, корешок прямой

2. Общая технологическая схема изготовления изделия
В способе плоской офсетной печати используются печатные формы, на которых печатающие и пробельные элементы расположены практически в одной плоскости. Они обладают избирательными свойствами восприятия маслосодержащей краски и увлажняющего раствора – воды или водного раствора слабых кислот и спиртов. Печатающие элементы формы – гидрофобные, пробельные – гидрофильные.



Рис.1. Форма плоской офсетной печати: 1 – печатающие элементы, 2 – пробельные элементы

Основным отличием данного способа печати от высокой и глубокой печати является использование промежуточной поверхности (офсетного цилиндра) при переносе краски с печатной формы на запечатываемый материал.
Формы плоской офсетной печати отличаются от форм высокой и глубокой печати по двум основным признакам:
- по отсутствию геометрической существенной разницы в высоте между печатающими и пробельными элементами (толщина КС: 2–4 мкм);
- по наличию принципиального различия физико-химических свойств поверхности печатающих и пробельных элементов.
Для получения данных форм необходимо создать на поверхности формного материала устойчивые гидрофобные печатающие и гидрофильные пробельные элементы.
Способы получения печатных форм – это форматная и поэлементная запись.
Форматная запись – это запись изображения по всей площади одновременно (фотографирование, копирование). Поэлементная запись – площадь изображения разбивается на некоторые дискретные элементы, которые записываются постепенно элемент за элементом (запись при помощи лазерного излучения).

Оригинал - текстовое или графическое произведение, прошедшее редакционно-издательскую обработку и подготовленное для изготовления печатной формы. Оригиналы классифицируются на следующие типы.
Аналоговый оригинал – оригинал на вещественном носителе, который требует перевод в цифровой файл для его последующей обработки и репродукции.
Цифровой оригинал – оригинал, информативная часть которого содержится в закодированной форме.
Сканирование изображения, компьютерная обработка и экранная цветопроба подробно рассматриваются в дисциплине ТОИИ.
Получение текстового файла, корректура и компьютерная верстка полос изучаются в дисциплине ТОТИ.
Электронный монтаж со спуском полос – размещение полос в формате запечатанного листа издания электронным способом, при помощи ЭВМ издательской системы. Монтаж контролируют визуально на экране монитора системы или по твердой копии, полученной на принтере.
Электронная версия печатной формы – электронный файл, содержащий в себе все элементы, которые будут расположены на печатной форме, в закодированной форме. С этого файла непосредственно будет проводится запись информации на форму.
Вывод пластины плоской офсетной печати – изготовление печатной формы плоской офсетной печати в зависимости от ее характеристик. Макет печатного изделия в электронном виде выводится на формные пластины, пропуская этап вывода цветоделенных диапозитивов.
Контроль качества готовой печатной формы – отслеживание параметров печатной формы по предъявляемым требованиям.

3. Технология формного процесса, общая схема
При изготовлении печатной формы плоской офсетной печати по схеме «компьютер – печатная форма» используют разновидность цифровой технологии - технологию CTP. В свою очередь, ее можно разделить на два направления, в зависимости от вида пластин: светочувствительную и термочувствительную. Эта технология в обоих случаях в качестве источника излучения использует лазеры. Поэтому эту технологию называют лазерной. При использовании светочувствительной пластины длина волны лазера равна 405-410 нм (фиолетовая область спектра).
Поэлементная запись информации по данной технологии проводится в автономном экспонирующем устройстве. Технология CTP может применяться как в ОСУ и в ОБУ. Данный способ получения печатных форм подразумевает использование лазерного воздействия. Используются различные свойства лазерного воздействия:
- тепловое воздействие – выжигание или термическое разложение тонких пленок на пробельных или печатающих элементах будущей печатной формы;
- фотохимическое воздействие на светочувствительный слой формного материала;
- электрофотографическое воздействие на фотополупроводниковый слой.
Страничные PostScript-файлы управляют устройством экспонирования, которое формирует форму подобно тому, как это делает фотонаборная машина. Однако в этом случае программное обеспечение еще и осуществляет размещение страниц на форме в соответствии с принятой схемой организации спусков.
В современном полиграфическом производстве данные технологии пока еще не заняли ведущее место. Их внедрение сдерживают дорогостоящие оборудование и формные материалы (импортного производства).

3.1. Строение печатной формы плоской офсетной печати для технологии CTP

А – формная пластина; Б – запись изображения; В – нагревание; Г – удаление защитного слоя; Д – печатная форма после проявления; 1 – подложка; 2 – фотополимеризуемый слой; 3 – защитный слой; 4 – лазер; 5 – нагреватель; 6 – печатающий элемент; 6- пробельный элемент
Технологические возможности современных офсетных пластин позволяют изготавливать на них печатные формы, пригодные для печати практически всех видов высококачественной продукции (изобразительной, рекламной, газетной, журнальной, книжной и др.).
В формных пластинах с фотополимеризуемым слоем в результате действия излучения происходит образование пространственной структуры. Для усиления действия излучения экспонированная пластина подвергается нагреванию, обеспечивающему упрочнение полимерной структуры. У некоторых типов формных пластин с ФПС на поверхности этого слоя может располагаться дополнительный слой для повышения эффективности первичного воздействия лазерного излучения, в этом случае нагревание после экспонирования не проводится. В дальнейшем осуществляется проявление, в результате которого неэкспонированные участки слоя удаляются. После записи изображения лазерным источником экспонированная формная пластина, как правило, подвергается необходимой обработке в химических растворах. Процесс изготовления печатных форм может включать такие операции, как гуммирование и техническая корректура, если они предусмотрены технологией. Контроль форм является завершающей стадией процесса.
Требования, предъявляемые к формным пластинам:
- шероховатость – от нее зависит адгезия копировального слоя к подложке и соответственно его устойчивость к механическому воздействию;
- тиражестойкость – 100-400 тысяч оттисков;
- цветовой контраст после обработки копии позволяет визуально оценить качество полученной формы;
- светочувствительность (S) определяет время экспонирования пластины. Чем выше светочувствительность, тем меньше времени надо затратить на экспонирование;
- разрешающая способность определяет процент воспроизводимой растровой точки и минимально возможную ширину штриха;
- энергетическая чувствительность – количество энергии на единицу поверхности, необходимой для протекания процессов в приемных слоях формной пластины;
- спектральная чувствительность – чувствительность приемных слоев к УФ в видимом диапазоне волн.

4. Оборудование, материалы, программное обеспечение
Для обработки текстовой и изобразительной части будущего издания потребуются такие технические средства, как: компьютер, ЖК-монитор, мышь, клавиатура, струйный принтер, CTP-устройство, устройство для цветопробы, ЛЭУ.
Программное обеспечение: Windows Vista Home Premium (операционная система), рабочие форматы (PS, PDF, EPS, TIFF, JPEG), приложения (Microsoft, Adobe, QuarkXpress, CorelDrow, Preps)
Подготовка оригиналов заключается в их проверке на наличие всех необходимых элементов, конвертировании в единый формат.
Средства для ухода за пластинами
CtP Deletion Pen - корректирующие карандаши для термальных пластин для CtP производства AGFA, Kodak, Lastra и некоторых других. Назначение их - коррекция форм, удаление лишних печатных элементов, выявленных на стадии оперативного контроля. Карандаши имеют удобный пластиковый корпус, выпускаются двух типоразмеров - для грубой и тонкой коррекции, различаются диаметром стержня.
Positive Deletion Pen - это корректирующие карандаши, назначение которых - удаление печатных элементов с традиционных позитивных офсетных пластин, где копировальный слой представляет собой диазосоединения. Карандаши производятся 4 типоразмеров, различающихся диаметром стержня.
Adding Pen - карандаши для добавления печатных элементов на офсетные пластины. Имеют алюминиевый корпус, два типоразмера по толщине. Добавление печатных элементов возможно на пластины любого типа - позитивные, негативные, для экспонирования в CtP или копировальной раме.
Лазерное экспонирующее устройство
ЛЭУ для записи информации на офсетные формные пластины предназначены для экспонирования излучения приемного слоя формной пластины.
Классификация ЛЭУ:
1. Тип формных пластин – для записи на светочувствительные пластины.
2. Тип лазерного источника – с твердотельным лазером.
3. Конструкция устройства – внутренний барабан. Формный материал располагается на внутренней поверхности неподвижного барабана, имеющего форму незавершенного цилиндра. Развертка изображения в таком устройстве осуществляется по вертикали за счет непрерывного вращения дефлекторов с одной отражающей гранью и по горизонтали за счет перемещения дефлектора и оптической системы вдоль оси барабана.
4. Назначение – универсальные.
5. Степень автоматизации – автоматизированные.
6. Формат – большой.

5. Контроль качества готовой продукции
Изготовленная печатная форма должна обладать следующими характеристиками:
- покрытие защищающим коллоидом;
- отсутствие поверхностных повреждений;
- наличие контрольных меток для совмещения;
- наличие меток для резки и фальцовки;
- на краях формы должны располагаться шкалы, позволяющие оперативно контролировать процесс печатания;
- размер изображения должен быть равен заданному размеру репродукции. Допустимые отклонения: при размерах изображения до 40х50 см - 1 мм;
- изображение на форме должно быть расположено в строгом соответствии с макетом. азмеры изображения должны соответствовать размерам диапозитива.
- формы одного комплекта для печати многокрасочной продукции должны быть одинаковой толщины. Допустимые отклонения для пластин толщиной 0,35–0,5 мм не более ±0,06 мм; толщиной 0,6–0,8 мм не более ±0,1 мм.
- все печатающие элементы должны быть воспроизведены на форме.
- изображение на форме должно быть расположено строго по центру с учетом закрепления формы в печатной машине.
- на форме должны находиться метки-кресты для совмещения, необходимые для контроля процесса печатания, и метки для фальцовки, обрезки и высечки (в зависимости от вида продукции).
Цифровые технологии записи информации на формные пластины требуют проведения контроля качества:
- тестирование и калибровка устройств записи;
- контроль самого процесса записи;
- оценка показателей печатной формы.
Важным является каждый этап контроля, а основополагающими считаются первые два этапа, поскольку настройка ЭУ и установка необходимых мощностей лазерного источника неминуемо сказывается на всем последующем технологическом процессе, в конечном итоге и не качестве форм. Средством для контроля качества форм являются контрольные тест-объекты. Они представлены в цифровом виде и содержат ряд фрагментов различного целевого назначения для визуального и инструментального контроля:
- информационный фрагмент с постоянной информацией о самом тест-объекте и переменной информацией с текущими данными о конкретных режимах записи;
- фрагменты, содержащие объекты пиксельной графики для визуального контроля воспроизведения элементов изображения;
- фрагменты, позволяющие оценить технологические возможности устройства записи и растрового процессора, а также репродукционно-графические показатели печатных форм.

UGRA/FOGRA DIGITAL PLATE CONTROL


Функциональные группы:
1. Информационная часть. Содержит постоянную (имя пользователя) и переменную информацию. Здесь указан угол поворота растровой структуры и т.д.
2. Оценка разрешающей способности. Состоит из штриховых элементов, расходящихся от центра под разными углами.
3. Диагностика геометрии. Для оценки воспроизведения штриховых элементов различных размеров.
4. «Шахматная» зона. Контроль воспроизведения элементов изображения.
5. Область визуальной оценки. Визуальный контроль экспозиции.
6. Полутоновый клин. Растровая шкала для контроля воспроизведения градации тонов.

DIGI CONTROL WEDGE

Функциональные группы:
1. Фокусировка. Для визуального контроля фокусировки лазерного луча. Состоит из 180 радиальных линий шириной 1 пиксель.
2. Экспозиция. Визуальный контроль экспозиции. Содержит 6 полей в форме кругов с шахматными заполнениями.
3. Воспроизведение штриховых элементов. Визуальный контроль.
4. Интервал градаций.
5. Растрирование. Информация о растрировании.
6. Информационный фрагмент. Содержит информацию постоянного содержания.
Печатная форма считается пригодной, если все функциональные группы предоставляют удовлетворительный результат.


6. Технологическая карта процесса

Наименование операции Назначение операции и ее сущность Применяемое оборудование Применяемые материалы
1 Запись изображения Образование пространственной структуры в светочувствительном слое Лазерный источник, ЭУОД Формная пластина с ФПС, цифровые данные
2 Нагревание Усиление эффекта структурирования ИК-сушка Формная пластина с записанным изображением
3 Удаление защитного слоя Освобождение печатных элементов Промывочная ванна Формная пластина
4 Проявление Вымывание пробельного слоя Процессор ФП, фиксатор, проявитель
5 Дополнительная химическая обработка

7. Спуск полос


8. Рентабельность, объем работ и трудоемкость
Технология CTP обеспечивает переход на полный цифровой процесс. Это значит, что все этапы производства можно контролировать и автоматизировать: от получения изображения с цифровых носителей до готовых печатных пластин. При использовании подобной технологии процесс производства сокращается на несколько этапов. Становятся ненужными два проявочных процесса, измерительное оборудование для контроля пленки, копировальное оборудование, системы перфорации и совмещения форм, монтажное оборудование. Требуется значительно меньшее помещение для оборудования. Производительность повышается на 70%. Заметно сокращается период приладки машин.
Время экспонирования или записи является основным фактором, влияющим на производительность.


Заключение
В ходе написания курсовой работы были получены знания о технологии CTP, светочувствительный и термочувствительных пластинах. А также проанализированы характеристики этого процесса и проведен сравнительный анализ. Исходя из этого можно сделать вывод, что система «компьютер – печатная машина» как на допечатной, так и в процессе подготовки печатной машины позволяет достичь большей производимости с высокой экономией средств. Малое время изготовления печатных форм, точность их установки и автоматическая предварительная регулировка красочных зон на основе цифровых данных – огромное преимущество.
и т.д.................

Министерство образования Российской Федерации

Московский государственный университет печати

Специальность - Технология полиграфического производства

Форма обучения - заочная


КУРСОВОЙ ПРОЕКТ

по дисциплине «Технология формных процессов»

тема проекта «Разработка технологии изготовления

печатных форм плоской офсетной печати по схеме компьютер-печатная форма на светочувствительных пластинах»


Студент Молчанова Ж.М.

Курс 4 группа ЗТпп 4-1 шифр пз004


Москва 2014г.


Ключевые слова: формная пластина, печатная форма, экспонирование, экспонирующее устройство, рекордер, лазер, проявляющий раствор, полимеризация, абляция, линиатура, градационная характеристика.

Текст реферата: в данном курсовом проекте осуществляется выбор технологии CtP для изготовления офсетных печатных форм для проектируемого издания. Использование CtP-технологии позволяет значительно упростить производственный процесс, снизить время изготовления комплекта печатных форм, значительно сократить количество оборудования и расход материалов.



Введение

Технические характеристика и показатели оформления издания

Возможный вариант технологической схемы изготовления издания

Общие сведения о формах плоской офсетной печати

2 Разновидности форм плоской офсетной печати

4 Классификация формных пластин для технологии Computer - to - Plate

Выбор проектируемого технологического формного процесса

Выбор используемого формного оборудования и контрольно-измерительной аппаратуры

Выбор основных материалов формного процесса

Карта проектируемого формного процесса

Заключение

Список литературы


Введение


Для выбора технологии изготовления печатных форм основной отправной точкой являются характеристики изданий выпускаемые данной типографией. Я буду рассматривать, типографию, выпускающую журнальную продукцию.

В последнее время в полиграфическое производство активно внедряется новая технология, получившая название компьютер-печатная форма (СТР-технология). Главной ее чертой является получение готовых печатных форм без промежуточных операций. Дизайнер, закончив верстку, с компьютера направляет изображение на выводное устройство, в качестве которого могут быть принтер, фотонаборный аппарат или специализированное устройство, и сразу получает печатную форму.

Технология Computer-to-Plate известна полиграфистам около 30 лет, но активно развиваться начала только в последние годы, в связи с развитием программного обеспечения, созданием новых формных материалов на которых возможна прямая лазерная запись.

офсетный печать пластина


1. Технические характеристики выбранного издания


Для выбора технологии изготовления печатных форм основной отправной точкой являются характеристики издания, готовящегося к печати. В данной курсовой работе рассматривается разработка технологии изготовления печатных форм для издания со следующими характеристиками:


Таблица 1 Характеристика проектируемого издания

Наименование показателяИздание, принятое к проектированиюВид изданияФормат издания Формат издания после обрезки (мм)Формат полос (кв.)9 1/3 × 13 1/4Объем издания в печатно-учетных листах бумажных листах страницахТиражтыс. экз.Красочность составных элементов издания тетрадей обложки 4+4 4+4Характер внутритекстовых изображенийрастровые (линиатура растра 62 лин/см) четырех красочныеПлощадь внутриполосных иллюстраций в процентах ко всему объему60%Кегль основного текста12 пГарнитура основного текстаPalladiumСпособ печатиплоский офсетныйВид используемой бумаги для печатимелованнаяТип печатных красок для печатиевропейская триадаКоличество тетрадей5Количество страниц в одной тетради16Способ фальцовкивзаимно перпендикулярнаяСпособ комплектовки блоковподборкаТип обложкицельная, скрепленная с блоком клеевым бесшвейным способом

2. Возможный вариант технологической схемы изготовления издания


3. Общие сведения о формах плоской офсетной печати


1 Основные понятия о плоской офсетной печати


Плоская офсетная печать - наиболее широко распространенный и прогрессивный способ печати. Это вид плоской печати, при котором краска с печатной формы переносится сначала на эластичный промежуточный носитель - резинотканевое полотно, а затем на запечатываемый материал.

Формы плоской офсетной печати отличаются от форм высокой и глубокой печати по двум основным признакам:

  1. отсутствует геометрическая разница в высоте между печатающими и пробельными элементами
  2. есть принципиальное различие физико-химических свойств поверхности печатающих и пробельных элементов

Печатающие элементы формы плоской офсетной печати обладают ярко выраженными гидрофобными свойствами. Пробельные элементы, наоборот, хорошо смачиваются водой и способны удерживать на своей поверхности некоторое ее количество, они обладают ярко выраженными гидрофильными свойствами.

В процессе плоской офсетной печати проводится последовательное смачивание печатной формы водно-спиртовым раствором и краской. При этом вода удерживается на пробельных элементах формы вследствие их гидрофильности, образуя на их поверхности тонкую пленку. Краска удерживается только на печатающих элементах формы, которые она хорошо смачивает. Поэтому принято говорить, что процесс плоской офсетной печати основан на избирательном смачивании пробельных и печатающих элементов водой и краской.


3.2 Разновидности форм плоской офсетной печати


Для получения форм плоской офсетной печати необходимо создать на поверхности формного материала устойчивые гидрофобные печатающие и гидрофильные пробельные элементы. Чтобы на печатной форме достичь эффекта отталкивания краски, используют два метода, основанных на различном взаимодействии поверхности печатной формы и краски:

·в традиционном офсете печатная форма увлажняется увлажняющим раствором. Раствор очень тонким слоем с помощью валиков наносится на форму. Участки формы, не несущие изображения, гидрофильны, т.е. воспринимают воду, а участки, несущие краску, олеофильны (воспринимают краску). Пленка увлажняющего раствора препятствует передаче краски на пробельные участки формы;

·в сухом офсете поверхность формного материала краскоотталкивающая, что обуславливается нанесением силиконового слоя. Путем специального целенаправленного его удаления (толщина слоя около 2 мкм) открывается поверхность печатной формы, воспринимающая краску. Этот способ называют офсетом без увлажнения, а также часто «сухим офсетом».

Доля «сухого» офсета не превышает 5%, что объясняется в основном следующими причинами:

-более высокая стоимость формных пластин;

-пониженная липкость и вязкость красок предъявляет более высокие требования к качеству бумаги, поскольку при печати не происходит нанесения на офсетную резину увлажняющего раствора. Она быстро загрязняется из-за скопления бумажной пыли и выщипывания волокон. В результате снижается качество печати, а машину приходится останавливать на обслуживание;

-более жесткие требования к стабильности температурного режима в процессе печати;

-низкая тиражестойкость и устойчивость к механическим повреждениям.

В настоящее время наиболее широкое распространение получили печатные формы для плоской офсетной печати с увлажнением пробельных элементов. У них, как и у форм без увлажнения есть свои недостатки и достоинства. Рассмотрим основные и наиболее важные из них:

Основные недостатки ОСУ:

-сложность поддержания баланса краска-вода;

-невозможность получения строго одинакового размера растровых точек при печати тиража, что увеличивает количество потерь материалов и времени;

-низкие экологические показатели.

Основные достоинства ОСУ:

-наличие большого количества расходных материалов для изготовления форм этого типа и оборудования для печати с них;

-процесс печати не требует поддержания строго определенных климатических условий (например, температуры), а также чистоты подготовки печатной машины;

-более низкая стоимость расходных материалов.

Печатные формы для офсетной печати представляют собой тонкие (до 0,3 мм), хорошо натягивающиеся на формный цилиндр, преимущественно монометаллические или, реже, полиметаллические пластины. Используются также формы на полимерной или бумажной основе. Среди материалов для печатных форм на металлической основе значительное распространение получил алюминий (по сравнению с цинком и сталью).

Офсетные печатные формы на бумажной основе выдерживают тиражи до 5000 экземпляров, однако из-за пластической деформации увлажненной бумажной основы в зоне контакта формного и офсетного цилиндров штриховые элементы и растровые точки сюжета сильно искажаются, поэтому бумажные формы могут быть использованы только для продукции однокрасочной печати невысокого качества. Формы на полимерной основе имеют максимальную тиражестойкость до 20000 экземпляров. К недостаткам металлических форм можно отнести их дорогостоимость.

Из анализа достоинств и недостатков рассматриваемых форм можно сделать вывод, что монометаллические формы с увлажнением пробельных элементов являются подходящим типом форм для печати тиража выбранного в данной работе издания.


3 Общие сведения о технологии Computer - to - Plate


Tехнология Computer - to - Plate - это способ изготовления печатных форм, при котором изображение на форме создается тем или иным способом на основе цифровых данных, полученных непосредственно из компьютера. При этом полностью отсутствуют какие-либо промежуточные вещественные полуфабрикаты: фотоформы, репродуцируемые оригиналы-макеты и т.д.

Существуют различные варианты CtP-технологий. Многие из них уже прочно закрепились в технологическом процессе российских и зарубежных полиграфических предприятиях, не представляя конкуренцию классической технологии, а лишь являясь одним из вариантов технологии изготовления печатных форм при определенных тиражах и требованиях к качеству продукции.

Устройства «Компьютер - печатная форма» производят регистрацию изображения на формную пластину посредством поэлементной записи. Формные пластины с изображением далее проявляют традиционным способом. Затем для печати тиража их устанавливают в листовых или рулонных печатных машинах.

В устройство записи подаются формные пластины, находящиеся в светозащитных кассетах. Формная пластина крепится на барабане и производится ее запись лазерным лучом. Далее экспонированная пластина через транспортер, подается из экспонирующего в проявочное устройство. Система полностью автоматизирована.

Основные преимущества CtP технологий:

-существенное сокращение длительности процесса изготовления печатных форм (из-за отсутствия процесса изготовления фотоформ)

-высокие показатели качества готовых печатных форм благодаря снижению уровня искажений, которые возникают при изготовлении фотоформ

-сокращение количества оборудования

-меньше потребность в персонале

-экономия фотографических материалов и обрабатывающих растворов

-экологичность процесса.


3.4 Классификация формных пластин для технологии Computer - to - Plate


Схема 3.1. Классификация технологии CtP по типу применяемых формных материалов

Схема 3.2. Классификация способов изготовления офсетных печатных форм по технологии CtP


4. Выбор разрабатываемого технологического формного процесса


Изготовление печатных форм на основе цифровых данных, получаемых непосредственно из компьютера, может осуществляться как в автономном режиме (экспонирующем устройстве для технологии CtP), так и непосредственно в печатной машине. Однозначно сказать, что качество печатных форм, полученных в автономном режиме, ниже по сравнению с полученными в печатной машине, нельзя. Определяющим фактором является подбор и выбор формного материала и оборудования. По длительности и энергоемкости процесса, уровню механизации и автоматизации, расходу формного материала и обрабатывающих растворов технология изготовления печатных форм в автономном режиме уступает технологии изготовления форм в печатной машине. Однако технология изготовления печатных форм в печатной машине очень дорога и зачастую может быть неоправданной при изготовлении той или иной продукции, поскольку не предусматривает использование разного формного материала. Поэтому для проектируемого издания печатные формы будем изготавливать в автономном экспонирующем устройстве в следующей последовательности: поэлементная запись информации (экспонирование), предварительный нагрев, проявление, промывание, гуммирование и сушка (обоснование см. раздел 6).


5. Выбор используемого формного оборудования и контрольно-измерительной аппаратуры


При выборе формного оборудования необходимо уделять внимание не только на такие характеристики, как формат, потребляемая мощность, габариты, степень автоматизации и т.д., но и принципиальному строению экспонирующей системы (барабанная, планшетная), которое определяет технологические возможности оборудования (разрешение, размеры лазерного пятна, повторяемость, производительность), а также сложности в сервисном обслуживании и срок службы.

В системах CtP, ориентированных на изготовление офсетных печатных форм, применяют лазерные экспонирующие устройства - рекордеры - трех основных типов:

üбарабанные, выполненные по технологии «внешний барабан», когда форма расположена на наружной поверхности вращающегося цилиндра;

üбарабанные, выполненные по технологии «внутренний барабан», когда форма расположена на внутренней поверхности неподвижного цилиндра;

üпланшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения.

Для планшетных рекордеров характерна невысокая скорость записи, низкая точность записи, невозможность экспонирования больших форматов. Эти свойства для барабанных рекордеров, как правило, не свойственны. Но внутрибарабанный, и внешнебарабанный принципы построения устройств также имеют свои недостатки и достоинства.

В системах с позиционированием пластины на внутренней поверхности цилиндра устанавливаются 1 -2 источника излучения. Во время экспонирования пластина неподвижна. Основные достоинства таких устройств: простота крепления пластины; достаточность одного источника излучения, благодаря чему достигается высокая точность записи; механическая стабильность системы вследствие отсутствия больших динамических нагрузок; простота фокусировки и отсутствие необходимости юстировки лазерных лучей; простота замены источников излучения и возможность плавного изменения разрешения записи; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм.

Главные недостатки - большое расстояние от источника излучения до пластины, что повышает вероятность возникновения помех, а также простои систем с одним лазером в случае его выхода из строя.

Внешнебарабанные устройства имеют такие достоинства, как: невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов.

К их недостаткам относят: использование значительного числа лазерных диодов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм; во время экспонирования барабан вращается, что приводит к необходимости использовать системы автоматической балансировки и усложняет конструкции крепления пластины.

Компании, производящие устройства с внешним и с внутренним барабанами, отмечают, что при одинаковом формате и примерно равной производительности первые дороже вторых на 20-30% (различия в цене высокопроизводительных систем, вследствие высокой стоимости многолучевых экспонирующих головок для внешнебарабанных устройств, могут быть еще больше).

Размер пятна лазерного луча и возможность его варьирования - существенный показатель в выборе оборудования. Также важной характеристикой является многофункциональность оборудования, т.е. возможность экспонирования различных формных материалов.

Согласно вышеприведенным рассуждениям и табл. 2 целесообразно использовать следующее оборудование: Escher-Grad Cobalt 8 - устройство с внутренним барабаном, подходит по формату продукции, имеет достаточно высокое разрешение, используемый лазер - фиолетовый лазерный диод 410 нм, минимальный размер пятна - 6 мкм. Качество изображения достигается использованием системы перемещения каретки микронной точности, высокочастотной электроники и 60-милливатного фиолетового лазера с системой термоконтроля.

Для контроля файлов, идущих на вывод, используется программа FlightCheck 3.79. Это программа для проверки наличия и соответствия требованиям PrePress файлов, составляющих файл верстки, наличия шрифтов, используемых в файле верстки, а также для сбора и подготовки всех необходимых файлов на вывод. Для контроля изготовления офсетных печатных форм по технологии CtP необходимо использовать денситометр для измерений в отраженном свете и имеющий функцию измерения печатных форм (например, ICPlate II фирмы GretagMacbeth) и многофункциональный тест-объект - шкалу Ugra/Fogra Digital Plate Control Wedge for CtP.

Для всех вышеприведенных экспонирующих устройств возможная толщина экспонируемого формного материала составляет 0,15-0,4 мм.

К оборудованию Escher-Grad Cobalt 8 для фотополимерных пластин рекомендуется процессор для проявки пластин Glunz&Jensen Interplater 135HD Polymer.


Таблица 2 Сравнительная характеристика формного оборудования

Виды возможного оборудованияконструкцияиспользуемый лазерразмер пятна лазераразрешение, dpiмакс. формат пластин, ммпроизводительность, форм/чэкспонируемые формные пластиныPolaris 100 + Pre-loader производитель AgfaплоскостнойFD-YAG 532 нм10 мкм1000-2540914х650120 формата 570х360 мм при 1016 dpi Agfa N90A, N91, Lithostar UltraGalileo S производитель Agfaвнутр. барабанND-YAG 532 нм10 мкм1200-36001130х82017 полного формата при 2400 dpiAgfa N90A, N91, Lithostar UltraPanther Fastrack производитель Prepress SolutionsплоскостнойAr 488 нм FD-YAG 532 нмПеременный от 14 мкм1016-2540625х91463 формата 500х700 мм при 1016 dpiAgfa Lithostar, N91; FujiCTP 075x производитель Krauseвнешн. барабанND-YAG 532 н10 мкм1270-3810625х76020 при 1270 dpiвсе фотополимерные или серебросодержащие пластины Agfa, Mitsubishi; фотопленки Fuji, Polaroid, KPG; материалы MatchprintEscher-Grad Cobalt 8внутр. барабанфиолетовый лазерный диод 410 нм6 мкм1000-36001050х810105 при 1000 dpiЧувствительные к фиолетовому излучению серебросодержащие и фотополимерные пластиныXpos 80e производитель Luscherвнутр. барабан830 нм 32 диода10 мкм2400800х65010все термопластины

Таблица 3 Характеристики процессора &Jensen Interplater 135HD Polymer

Скорость40-150 см/минШирина пластины, max1350 ммТолщина пластины0,15-0,4 ммТемпература предварительного нагрева70-140°СТемпература сушки30-55°СТемпература проявителя20-40°С, рекомендуется охлаждающее устройствоВходит в комплектСекции предварительного нагрева и промывки, полное погружение пластины, фильтр проявителя, автоматическая система пополнения растворов, щетки, циркуляция в секциях промывки и дополнительной промывки, автоматическая секция гуммирующей секции, охлаждающее устройство

6. Выбор основных материалов формного процесса


Таблица 4 Сравнительная характеристика основных типов формных пластин для технологии CtP

Принцип построения слояДлина волны экспонирующего излучения (нм)Градационная характеристика и воспроизводимая линиатура растраТиражестойкость без обжига (тыс.экз.)Вид обработкиПреимуществаНедостаткиДиффузия комплексов серебра488-5412-98 % 80 лин/см250проявление, промывание, фиксирование, гуммированиехорошее разрешение; могут экспонироваться дешевыми аргоновыми лазерами низкой мощности; используют для обработки стандартную химию; могут экспонироваться как традиционным, так и цифровым способаминедостаточная износостойкость на больших тиражах; тенденция к удорожанию формных пластин из-за применения серебра; дорогостоящее проявление, регенерация и утилизация химических растворов; необходимость работы при красном неактиничном излученииГибридная технология488-6702-99 %150проявление/ фиксирование для серебряного слоя; УФ-засветка через маску; проявление, промывание; гуммирование пластинымогут экспонироваться почти всеми используемыми в полиграфической промышленности лазерами; могут экспонироваться как традиционным, так и цифровым способамииз-за двойного экспонирования возникают потери в разрешающей способности; требуется громоздкая и дорогая проявочная машина, способная контролировать два отдельных химических процесса; необходимость работы при красном неактиничном излученииСветочувствительный фотополимеризующийся488-5412-98 % 70 лин/см100-250предварительный нагрев, проявление, промывание, гуммированиев зависимости от используемого покрытия формной пластины могут обрабатываться в обычном стандартном водном растворетребуется предварительный обжиг до начала обработки; в зависимости от спектральной чувствительности может возникнуть необходимость работы при красном неактиничном излученииТермоабляционная технология780-12002-98 % 80 лин/см100-1000без обработки (лишь отсос продуктов сгорания)позволяют работать на свету и не требуют специального светонепроницаемого записывающего оборудования; позволяют получить резкую растровую точку; не требуют обработки в химических растворахиспользование дорогостоящего мощного лазераТехнология трехмерного структурирования830, 10641-99 % 80 лин/см250-1000предварительный нагрев, проявление, промывание, гуммированиепозволяют работать на свету и не требуют специального светонепроницаемого записывающего оборудования; формные пластины нельзя переэкспонировать, поскольку могут иметь только два состояния (проэкспонированы, либо нет); позволяют получить более резкую растровую точку и, соответственно, более высокую линиатурупока еще требуется предварительный обжиг до начала обработки


Из таблицы 4 можно сделать следующие выводы: почти все термочувствительные формные пластины (независимо от того какую технологию они реализуют) обладают максимально возможными на сегодняшний день параметрами, которые впоследствии определяют технологический процесс и качество печатной продукции. К ним относятся: репродукционно-графические показатели (градационная характеристика, разрешающая и выделяющая способность) и печатно-технические (тиражестойкость, восприятие печатной краски, стойкость к растворителям печатных красок, молекулярно-поверхностные свойства). Термочувствительные пластины более приемлемы по отношению к пользователю, чем их светочувствительные аналоги. Они позволяют работать в обычных производственных условиях, не требуют безопасного освещения, термочувствительные покрытия практически не нуждаются в защитных пленках, имеют высокую, устойчивую тиражестойкость и другие печатно-технические свойства.

С другой стороны, поскольку энергетическая чувствительность этих пластин значительно ниже, чем у светочувствительных, для изготовления форм на термочувствительных пластинах требуется не только повышение мощности ИК-лазера при экспонировании, но и, как правило, необходим подвод больших количеств механической и химической энергии на стадиях дополнительной обработки при проявлении или очистке готовых форм.

Однако определяющим фактором, ограничивающим их широкое использование, является высокая стоимость. Поэтому их целесообразно использовать для высокохудожественной многокрасочной продукции.

В нашем случае, т.к. серебросодержащие формные материалы и растворы для их обработки имеют тенденцию к удорожанию, а также вследствие ряда экологических и технологических причин (высокая трудоемкость, низкая производительность и т.д. см. табл. 4) используем негативный светочувствительный фотополимер Ozasol N91V фирмы Agfa. Его характеристики: сенсибилизирован к излучению фиолетового лазерного диода с длиной волны 400-410 нм; толщина материала 0,15-0,40 мм; окраска слоя красная, светочувствительность 120 мкДж/см2; разрешающая способность пластин N91V зависит от типа используемого экспонирующего устройства и обеспечивает воспроизведение растра с линиатурой до 180-200 лин/см; охват растровых градаций от 3-97 до 1-99%; тиражестойкость достигает 400 тыс. экз.

На рис.5.1 показано принципиальное строение выбранного материала.


Рис.5.1. Схема строения светочувствительных фотополимерных пластин: 1 - защитный слой; 2 - фотополимеризующийся слой; 3 - оксидная пленка;4 - алюминиевая основа


Основные достоинства фотополимерной технологии - скорость изготовления печатной формы и ее высокая тиражестойкость, что очень важно как для газетных предприятий, так и для типографий, имеющих большую загрузку малотиражной продукцией. Кроме того, при правильном хранении эти формы можно использовать повторно.

Выбранный формный материал может экспонироваться на выбранном ранее устройстве CtP - Escher-Grad Cobalt 8, т.к. он может поставляться любым форматом. Это позволяет печатать издание на печатных машинах с максимальным форматом бумаги 720х1020 мм. Печать можно произвести на листовых четырехсекционных офсетных машинах двусторонней печати, например, SpeedMaster SM 102.

Толщина фотополимеризующегося слоя пластины N91V невелика, что дает возможность провести экспонирование в одну стадию. В процессе экспонирования формируются печатающие элементы формы. Под действием лазерного излучения происходит послойная фотополимерзация композиции по радикальному механизму, и образуется нерастворимая трехмерная структура, пространственная сшивка которой заканчивается при последующей термообработке при температуре 110 - 120 °С. Дополнительный нагрев пластины ИК-лампами позволяет также снизить внутренние напряжения в печатающих элементах и повысить их адгезию к подложке перед проявлением. После термообработки пластина проходит предварительную промывку, во время которой удаляется защитный слой, что позволяет избежать загрязнения проявителя и ускорить процесс проявления. В результате проявления неэкспонированные участки исходного покрытия растворяются, и пробельные элементы формируются на алюминиевой подложке. Готовые формы промывают, гуммируют и сушат.


7. Карта проектируемого формного процесса


Таблица 5 Карта формного процесса

Наименование операцииНазначение операцииПрименяемое оборудование, приспособления, приборы и инструментыПрименяемые материалы и рабочие растворыРежимы выполнения операцииВходной контроль файлов, предназначенных на вывод, и формных пластинопределение пригодности их к использованию в соответствии с технологическими инструкциями по процессам офсетной печатиПрограмма FlightCheck 3.79, линейка, толщиномер, лупаформные пластины-Подготовка оборудованиявключение оборудования, проверка наличия растворов для обработки в емкостях, установка требуемых режимовEscher-Grad Cobalt 8; проявочный процессор Glunz&Jensen Interplater 135HD Polymerпроявляющие растворы Ozasol EP 371 replenisher, MX 1710-2; дистиллированная вода; гуммирующие растворы Spectrum Gum 6060, HX-148-Экспонирование Предварительный нагрев проявление промывание гуммирование сушкаперенос информации файла на формную пластину (образование сшитой трехмерной структуры) обеспечение требуемой тиражестойкости (повышение устойчивости печ. элементов) удаление незаполимеризованного слоя удаление остатков проявляющего раствора защита от грязи, окисления и повреждения удаление излишков влагиEscher-Grad Cobalt 8; проявочный процессор Glunz&Jensen Interplater 135HD Polymer Проявочный процессор Glunz&Jensen Interplater 135HD Polymer см. п. предварительный нагрев см. п. предварительный нагрев см. п. предварительный нагрев см. п. предварительный нагревпластины Ozasol N91; - проявляющие растворы Ozasol EP 371 replenisher, MX 1710-2; дистиллированная вода гуммирующие растворы Spectrum Gum 6060, HX-148T=3 мин t=70-140°C скорость прохождения копии 40-150 см/мин - - t=30-55°CКонтроль печатной формыопределение их пригодности к использованию в соответствии с технологическими инструкциями по процессам офсетной печатиденситометр ICPlate II фирмы GretagMacbeth, лупа--


Спуск полос первой и второй тетрадей («оборот - чужая форма»)


I сторона

II сторона

Заключение


Надо сказать, что никто не покупает, как правило, просто оборудование - покупают решение. И это решение должно отвечать определенным поставленным задачам. Это может быть, например, снижение производственных затрат, повышение качества продукции, увеличение производительности и т.д. При этом, естественно, должна учитываться специфика конкретной типографии - тиражность, требуемое качество, используемые краски и т.д. На другой чаше весов находится цена этого решения.

Теоретически нет сомнений, что за CtP будущее. Развитие любой технологии, и печать не исключение, неизбежно ведет к ее автоматизации, минимизации ручного труда. В перспективе любая технология стремится к сокращению производственного цикла до одной ступени. Однако до тех пор, пока технология печати не достигла такого уровня развития, потенциальным потребителям приходится взвешивать множество за и против.


Используемая литература


1. Карташова О.А. Основы технологии формных процессов. Лекции, прочитанные для студентов. ФПТ. 2004.

Амангельдыев А. Прямое экспонирование формных пластин: говорим одно, подразумеваем другое, делаем третье. Журн. «Курсив», 1998. №5(13). С. 8 - 15.

Битюрина Т., Филин В. Формные материалы для CTP - технологии. Журн. «Полиграфия», 1999. №1. С. 32 -35.

Самарин Ю.Н., Сапошников Н.П., Синяк М.А. Печатные системы фирмы Heidelberg. Допечатное оборудование. М: МГУП, 2000. С. 128-146.

Погорелый В. Современные системы CTP. Журн. «КомпьюПринт», 2000. №5. С. 18 - 29.

Группа компаний Легион. Каталог допечатного полиграфического оборудования: осень 2004 - зима 2005.

7. Энциклопедия по печатным средствам информации. Г.Киппхан. МГУП, 2003.

8. Процессы офсетной печати. Технологические инструкции. М: Книга, 1982. С.154-166.

Полянский Н.Н. Методическое пособие по оформлению курсовых проектов и выпускных работ. М: МГУП, 2000.

Полянский Н.Н., Карташова О.А., Бушева Е.В., Надирова Е.Б. Технология формных процессов. Лабораторные работы. Ч.1. М: МГУП, 2004.

Гудилин Д. «Часто задаваемые вопросы о CtP». Журн. «КомпьюАрт», 2004, №9. С. 35-39.

Жарова А. «Пластины CTP - опыт в освоении технологий». Журн. Полиграфия, 2004. №2. С. 58-59.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Московский государственный университет печати им.И.Федорова

Реферат на тему: «Современное состояние офсетной печати»

Выполнил:Пучнина Е.А.

Группа ЗЭуп4-1

Проверил:Ольшевская Е.Е.

Введение 3

Достоинства офсетной печати и ее место в современном мире печати 4
Развитие допечатных процессов офсетного производства 6
Вывод информации на фотопленку 7
Вопросы утилизации формных пластин 8
Офсетные печатные процессы 9
Технологические особенности офсетной печати 11
Будущее офсетной печати 12

Введение

Офсетная печать, как и прежде, остается сегодня основным способом полиграфического воспроизведения полиграфической продукции в различных ее видах: газеты, журналы, книги, художественные альбомы, этикетки, упаковки, разнообразная акцидентная продукция. И сколько бы ни говорилось о ее бесперспективности, о конкуренции со стороны других печатных способов, она все же достаточно прочно удерживает ведущие позиции. По прогнозам Исследовательской информационной ассоциации полиграфистов Великобритании PIRA (Printing Information Research Association), в 2010 году рыночная доля офсетной печати среди других ее способов составит 40%, что превышает доли других основных способов печати.

Что касается качества печати, то здесь конкурентом офсета может быть только глубокая печать с ее огромными тиражами. Верхний уровень качества для средних и больших тиражей почти полностью принадлежит офсетной печати. Область малых тиражей при высоком качестве продукции занимает цифровая печать (впрочем, и сюда активно внедряется офсетная печать), а область больших, а лучше сказать, сверхбольших тиражей при высоком уровне качества - глубокая печать.

Достоинства офсетной печати и ее место в современном мире печати

Основные достоинства офсетной печати, по сравнению с другими способами, таковы:


  1. Экономичное изготовление небольших, средних и больших тиражей с высоким качеством, причем на самых различных сортах бумаги.

  2. Надежное, быстрое и относительно недорогое изготовление печатных форм как обычными, так и цифровыми способами.

  3. Высокая степень стандартизации и автоматизации всего производственного процесса (чего, к сожалению, нет еще во флексографской печати).
Флексографская печать выросла буквально за последние годы, превратившись из второстепенного способа, которым раньше с резиновых форм печатали в основном ярлыки и грубые надписи на бумажных мешках, в мощную ветвь полиграфической индустрии, которая представляет серьезную угрозу благополучию офсетной печати, например в печатании газет. Не собирается сдавать прочных позиций в секторе изготовления печатной продукции огромными тиражами, и глубокая печать, у которой здесь практически нет конкурентов. Есть и другие способы печати, которые хотя и имеют свои ниши на рынке полиграфической продукции, но не являются конкурентами офсетной печати.

Офсетная печать именно возникла более 100 лет назад и сразу же показала свои неоспоримые достоинства. В результате сегодня она является мошной промышленной отраслью, высокомеханизированной и высокоавтоматизированной, широко использующей в своих машинах, устройствах, технологиях, материалах все достижения современной науки. При этом глубокие преобразования офсетного способа произошли, можно сказать, мгновенно,за несколько десятков лет. Если современники Алоиза Зенефельдера , изобретателя литографии, являющейся предшественницей офсетного способа, не смогли дожить до появления офсета, то многие наши современники смогли пережить множество его этапов – от цинковых и алюминиевых формных пластин до современных беспленочных технологий. Каждый год, а может, и каждый месяц приносит нам новшества, которые отрицают продукты, буквально вчера сами являвшиеся новшествами.

Принцип прежней офсетной печати сохранился, но от него остался только перенос изображения на бумагу не напрямую с жесткой печатной формы, а через эластичное промежуточное резиновое полотно благодаря чему достигается существенное повышение качества печати. Но воплощение этого принципа совершенно иное, чем прежде, причем это касается всех его сторон – начиная от подготовительных, допечатных процессов, до собственно печати и последующих отделочных работ.

В офсете, как, впрочем, и в современной полиграфии вообще, прокладывают себе путь беспленочное технологии. В них изображение на печатную форму переносится не копированием изображения с материального оригинала, а переносом информации, которая записывается, обрабатывается и выводится на форму построчно из цифровых массивов данных. Кроме того, специалисты отмечают общую тенденцию развития отрасли, включающую в себя интеллектуальные медиа, более актуальные, содержащие индивидуальное содержание, диалоги с клиентами и возможность быстрого поиска.

Человечество переходит к информационному обществу, характеризующемуся ростом компьютеризации, наступлением сетевых коммуникаций. Все более прочные позиции занимает цифровая техника , которая уже стала реальностью и которая входит в область офсетной печати. В результате всех этих преобразований полиграфическая промышленность переходит к решению задач поставщика кросс-медиа, охватывающих процессы подготовки и вывода единственного массива данных для таких различных медиа, как печать, компакт-диск и Интернет.

В технологическом плане отчетливо проявляются тенденции к уменьшению тиражей изданий и к повышению красочности продукции, а также к сокращению сроков их изготовления. Эти тенденции должен учитывать такой ведущий способ, которым является офсет. Поэтому необходимо применять все новшества в области недорогой цветной печати, а это требует усиления контроля на всех стадиях производственного процесса при активном участии сотрудников, участвующих в нем на всех этапах производства. В связи с уменьшением тиражности и увеличения числа тиражей предлагаются офсетные печатные машины, которые напрямую принимают цифровые данные и могут значительно быстрее изготавливать даже самые минимальные тиражи, вплоть до единичных экземпляров.

Вследствие глубокого проникновения цифровых технологий в препресс, в собственно печать, в послепечатную обработку полиграфической продукции, все части общего производства сливаются друг с другом. В связи с этим ряд фирм (например, Scitex) создали специальные интегрированные решения для допечатного производства, цифрового изготовления печатных форм, цифровой печати и послепечатной обработки. Такое интегрированное производство может удовлетворить требования предприятия любого уровня, размера и стратегической ориентации.

Вышеуказанные процессы происходят на фоне включения всех граней полиграфической отрасли в новые направления и виды деятельности, определяемые стратегическими задачами информационного общества. Так, например, предприятия по переработке бумаги и полимеров, наряду с ожидаемыми техническими усовершенствованиями машин, устройств, приборов и систем для переработки бумаги, переплетных предприятий и изготовления упаковочных средств, ведущими к снижению времени приладки и повышению производительности труда, обращают особое внимание на области цифровой печати, на системы вывода печатных данных из компьютера на пленку , из компьютера на форму, из компьютера в печать. Вследствие внедрения прямой передачи текстовых и иллюстрационных данных для изготовления фотоформ и печатных форм изменились формы сотрудничества между клиентом и поставщиком. Печать по запросу (Printing-on-Demand) превращается в новый сегмент рынка. Запечатка упаковочных средств останется и впредь главной областью деятельности таких классических способов печати, как офсет, но производительность существенно вырастет благодаря использованию логистики бумаги, систем вывода информации из компьютера на печатную форму СtР (Computer-to-Plate) и сквозным системам управления производством Workflow.

Развитие допечатных процессов офсетного производства

В области допечатных процессов офсетного производства продолжается рационализация, целями которой являются сокращение времени производства и сращивание с печатными процессами. Репродукционные предприятия все чаще подготавливают цифровые данные, которые передаются на печатную форму или непосредственно в печать. Технологии прямого экспонирования на формные материалы активно развиваются, при этом форматы обработки информации увеличиваются.

Важнейшим элементом технологии офсетной печати является печатная форма, которая в последние годы претерпела существенные изменения. Идея записи информации на формный материал не посредством копирования, а путем построчной записи сначала с материального оригинала, а затем из цифровых массивов данных была известна уже лет тридцать назад, но ее интенсивная техническая реализация началась сравнительно недавно. И хотя сразу на этот процесс перейти невозможно, постепенно такой переход происходит. Однако есть и предприятия (причем не только в нашей стране), которые работают еще по старинке, а к современным материалам относятся с подозрением, несмотря на то, что эти пластины изготавливаются с высочайшим заданным качеством и имеют все гарантии производителя. Поэтому наряду с широким ассортиментом офсетных формных пластин для лазерной записи существуют и обычные копировальные пластины, которые производителями во многих случаях рекомендуются одновременно и для записи лазерным сканированием или лазерным диодом. В дополнение к технологии CtP появилась даже технология CtcP (Computer-to-conventional Plate - из компьютера на обычную формную пластину). Все это обеспечивает полиграфическому предприятию большую гибкость работы.

В настоящее время в мире на рынке имеется множество формных пластин от известных производителей: Agfa-Hoechst, BASF, Lastra, Polychrome, Presstek, Fujifilm, DuPont, Mitsubishi, Kodak и др. В России выпускают офсетные формные пластины фирмы «ДОЗАКЛ», «Офсет Сибири» и др.

Вывод информации на фотопленку

Следует отметить, что технология вывода информации на фотопленку себя далеко не исчерпала, но это уже не та технология, которая заключалась в фотосъемочных или фотокопировальных процессах, в результате чего мы получали негатив или диапозитив, затем копировали их на формную пластину, и для этого требовались репродукционные фотоаппараты и копировальное оборудование. Появились технологии вывода информации из компьютера на фотопленку CtF (Computer-to-Film) - информация записывается в виде негатива или диапозитива. По сравнению с технологиями вывода на форму CtP это дает очень многое:


  1. Требуются значительно меньшие инвестиции.

  2. Фотопленка остается дешевым носителем изображения.

  3. Технология CtF имеет более высокую производительность по сравнению с технологией CtP.

  4. На пленке легче обнаруживаются ошибки.
У небольших типографий, которых, как известно, большинство, пока нет никакого выбора. Основное достоинство и основной смысл технологии CtP состоит в том, чтобы получать в результате ее использования полностью смонтированную , готовую печатную форму. В соответствии с технологией CtF информацию из компьютера на пленку можно выводить по частям, а затем ее монтировать. Формы же монтировать по частям невозможно, а полный вывод всей формы требует выводного устройства на форматы печатных машин. С увеличением формата выводного устройства резко возрастает его стоимость, поэтому пленка остается основным носителем информации для полиграфического предприятия в обозримом будущем. По прогнозам, ее расход в ближайшие годы составит свыше 300 млн. м2, в то время как расход формных материалов достигнет 50 млн. м2.

Технология CtP, сокращающая производственные этапы, лишь тогда сможет проявить свои достоинства, когда предприятия смогут получать цифровые данные в широких пределах или изготавливать их самостоятельно. Большие преимущества в этом направлении обеспечивают развивающиеся термочувствительные формные пластины, для которых не требуется никакой дополнительной обработки после записи на них изображения.

Совсем недавно появились и фиолетовые лазерные диоды, которыми можно экспонировать как серебросодержащие, так и фотополимеризующиеся формные пластины. Их достоинствами являются низкая стоимость инвестиций при использовании четырехполосных экспонирующих устройств (имиджзеттеров) и высокая скорость экспонирования на восьмиполосных выводных устройствах. Кроме того, возможно использовать фиолетовые лазерные диоды и при экспонировании ультрафиолетовым светом обычных фотополимеризующихся пластин (технология CtcP).

Вопросы утилизации формных пластин

Технология CtP рассматривается рядом крупных фирм, работающих в области производства офсетных машин, как переход к печатному производству без печатных форм. Примером может служить цифровая офсетная машина DICOweb фирмы MAN Roland, которая обеспечивает возможность нанесения изображения и его последующего стирания в печатной машине, а затем нанесения вновь. Эта технология обозначается прежней аббревиатурой CtP, но с новой ее расшифровкой (Computer-to-Press - из компьютера в машину).

Для издательской и полиграфической отрасли все большую роль играет Интернет, что означает распространение изданий через сеть и комбинирование различных медийных форматов. Получают развитие редакционные онлайн-системы.

Офсетные печатные процессы

Полиграфическое машиностроение продолжает развиваться, появляются новые листовые и офсетные машины, в которые интегрируются цифровые процессы. Если в прошедшие годы наиболее активно развивались копировальные технологии, то сейчас основное внимание уделяется печатной технике. Вследствие этого происходит борьба способов печати, в которой наблюдается стремление копировальной техники отвоевать себе доли рынка цифровой печати с малыми тиражами, в том числе и рулонной печати с тиражами менее 15 тыс. экземпляров (рис.).

Листовая офсетная печать занимает на рынке пространство между цифровой и рулонной печатью с тиражами от 1 тыс. до 40 тыс. экземпляров. В этой бурно развивающейся области производства и применения печатных машин, мы видим появление самых разнообразных устройств различных форматов и конфигураций, которые характеризуются высочайшей производительностью и высоким качеством изготавливаемых изданий. Здесь отмечается повышение красочности вплоть до 8 красок и больше, что обеспечивает возможность запечатки лицевой и оборотной сторон листа за один прогон машины. Кроме того, активно внедряется автоматизация и оцифровывание печатного процесса с целью создания требуемой информации в цифровом виде из предыдущих ступеней производственного процесса.

В области производства листовых печатных машин компании ведут активную разработку технологий в направлении дальнейшего расширения возможностей облагораживания печатной продукции , в первую очередь для упаковочной продукции. Получают дальнейшее развитие и рулонные офсетные печатные машины, которые начинают использоваться для совершенно новых задач. Например, германская фирма Goebel GmbH создала высокопроизводительную рулонную ротационную машину с рабочей шириной 680 мм для печати каталогов прямой рассылки и высококачественных рекламных брошюр, которая характеризуется исключительно малым временем приладки, высоким качеством продукции и большой гибкостью. Значительное развитие получают так называемые узкополотенные печатные машины, которые используются не только для печати этикеток, но и упаковочной продукции. В этом сегменте полиграфического машиностроения большое значение приобретают гибридные печатные машины, в которых, наряду с офсетной, используются и другие способы печати, а также оборудование для облагораживания печатной продукции.

Рулонные офсетные машины также характеризуются высокой степенью автоматизации печатного процесса. Существенно сократилось время приладки машин, значительно повысились скорости печати, в частности благодаря бесканальным офсетным цилиндрам и уменьшению щели канала.

По сравнению с листовой печатью рулонная печать имеет определенные преимущества: возможность получения на выходе из машины полностью готового печатного продукта; обеспечение выполнения многих вариантов послепечатного процесса в линию; существенное расширение спектра разнообразных видов фальцовки.

По данным PIRA, доля рулонной печати в области журнального производства в ближайшие 10 лет возрастет с 63 до 70%, но это произойдет за счет глубокой печати.

Современная цифровая офсетная печать занимает особое место среди офсетных технологий: с одной стороны, она соответствует современным тенденциям развития полиграфической промышленности, а с другой – стимулирует ее развитие в направлении следующих тенденций:


  1. Цифровая офсетная печать прекрасно удовлетворяет требованиям современной полиграфии по увеличению красочности продукции - до 6 и более красок.

  2. Цифровая печать идеально подходит для печати малых тиражей. Ее экономичность давно уже подтверждена различными исследованиями зарубежных специалистов. Так, в цифровой печати себестоимость при «тираже» в один оттиск мало отличается от стоимости оттиска при тиражах в несколько сот и даже тысяч экземпляров. По расчетам, выполненным еще в 1997 году в швейцарском Институте по контролю и исследованиям материалов (EMPA), себестоимость одного четырехкрасочного одностороннего оттиска формата А4 на машине HP Indigo E-Print 1000+ при тираже в 200 листов составляет около 1 долл., а при тираже 1600 листов - около 80 центов.

  3. Высокая оперативность цифровой печати как нельзя лучше обеспечивает возможность срочной печати (Just in Time).

  4. В цифровой офсетной печати реализуется рассмотренный выше принцип печати СtР. При этом скорость передачи информации достаточно высока. Например, у машины HP Indigo UltraStream она составляет 1200 Мбит/с.

  5. В компьютерные файлы печатаемых изображений может быть в любой момент оперативно внесена необходимая дополнительная, персонализированная информация, рассчитанная на конкретного пользователя печатной продукцией.

  6. Качество цифровой офсетной печати достаточно высоко. В частности, разрешение 812 dpi машины HP Indigo UltraStream соответствует всем параметрам высококачественной офсетной печати.

Технологические особенности офсетной печати

Офсетная печать имеет целый ряд технологических особенностей, многие из которых характерны только для нее и которые следует учитывать при работе на печатной машине.

Приладка. Наблюдается большой разброс времени выполнения приладки, что обусловлено не только большим количеством отдельных параметров и сложностью самого процесса, но и производительностью труда и способностью работников быстро выполнять эти работы. Если приладка проходит без отклонений от стандартного процесса, то она фиксируется как один процесс, начиная от приладки печатных форм и до пуска машины. Более длительные сроки приладки часто связаны с неправильно скопированными формами. Больших затрат времени требует также необходимость выполнения корректуры.

Тиражная печать. Разброс времени в производительности при печати тиража не так велик, как при приладке, но все же разница может составлять от 5 до 140% средней величины.

Причинами сниженной производительности печати могут быть традиционные для предприятия скорости работы печатных машин , которые бывают ниже стандартных. Возможно наличие дефектов используемых материалов или применение более дешевых материалов, что, в частности, ведет к большому пылению бумаги.

Требуется также учитывать вспомогательное время, необходимое для поддержания машин в рабочем состоянии и для ликвидации возможных неисправностей. Самые современные машины с более коротким временем приладки на основе дополнительного электронного оснащения требуют значительно меньшего вспомогательного времени - вместо средних 15 минут затрачивается только 6 минут.

В работе листовых офсетных печатных машин имеют место следующие непроизводительные затраты:


  • технические дефекты, а прежде всего - дефекты изготовления печатных форм: неправильно смонтированные или перепутанные пленки, неточное совмещение изображений на формах одного комплекта, различные ошибки экспонирования и т.п.;

  • дефекты материалов, приводящие чаще всего к дополнительной смывке офсетных полотен (при значительном пылении бумаги);

  • дефекты печати, в том числе ошибки типографии, дефекты в работе машин, ошибки в обслуживании оборудования;

  • небольшой ремонт или замена дефектных деталей машины;

  • организационные помехи (по подсчетам германских полиграфистов, они включают 4,7% производственного времени на ожидание материалов и 5,5% времени на выполнение корректурных работ);

  • вспомогательные работы, включающие пусковые работы и остановку машины;

  • подготовительно-заключительные работы;

  • предупредительный ремонт.
Из вышесказанного следует, что всегда имеются резервы, которые обеспечивают возможность приближения к наивысшей производительности – к границе возможности механического использования печатного оборудования.

Будущее офсетной печати

Уже сегодня можно предположить, как будет выглядеть офсетная печатная машина и офсетная печать будущего. Можно прогнозировать, хотя и с определенным приближением, перспективы развития офсета на основе тех тенденций, которые мы наблюдаем сегодня.

Будет продолжаться сокращение непроизводительного времени на обслуживание печатных машин между выполнением заказов. Следует ожидать еще более высокой степени автоматизации подготовительно-заключительных работ между выполнением отдельных заказов. Автоматизируются все предварительные настройки, благодаря чему машина будет быстрее подготавливаться к печати. Оператор машины будет более активно выполнять функции контроля и слежения за работой машины.

Следует ожидать дальнейшего развития технологий нанесения изображения внутри печатной машины непосредственно на цилиндре, с которого эта информация после окончания печати тиража автоматически удаляется, а «формный» цилиндр снова становится доступным для нанесения информации о следующем заказе.

Одним из недостатков офсетной печатной машины является постоянство печатного формата, поэтому появятся машины с переменными форматами печати. Учитывая растущую (по крайней мере, за рубежом) тенденцию к распространению сетевых типографий, следует ожидать того , что офсетная печатная машина станет элементом такой сетевой типографии, частью общего производственного процесса типографии как допечатные и послепечатные процессы. Границы между обычными и цифровыми офсетными печатными машинами будут все больше исчезать.

В технологическом плане офсетная печать (и традиционно, и в соответствии с самим принципом плоской печати, когда печатные и пробельные элементы находятся в одной плоскости) является печатью с увлажнением, однако получит более широкое распространение офсет без увлажнения в листовой и рулонной офсетной печати, что уже сейчас активно применяется на практике.

И наконец, говоря о гибридной печати, следует отметить, что сочетание офсетного способа с другими способами печати (трафаретной, цифровой), а также со способами облагораживания печатной продукции (тиснение, печать металлическими красками, голограммы и пр.) и со штанцеванием - очень перспективное направление, которое будет развиваться и в дальнейшем, обеспечивая получение на офсетных оттисках поразительных эффектов.

gastroguru © 2017