Определение фосфатов. Определение фосфатов Полифосфаты в питьевой воде для чего определяют

ГОСТ 18309-72

Группа Н09

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

Метод определения содержания полифосфатов

Drinking water. Method for determination of polyphosphates content


Текст Сравнения ГОСТ 18309-2014 с ГОСТ 18309-72 см. по ссылке .
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 1974-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.72 N 2356

2. ВВЕДЕН ВПЕРВЫЕ

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер раздела, пункта

** На территории Российской Федерации действует ГОСТ Р 51593-2000 .

1.2. Объем пробы воды для определения содержания полифосфатов должен быть не менее 500 см.

1.3. Пробы воды отбирают в хорошо выщелоченные склянки с притертыми пробками.

1.4. Если анализ в день отбора проб не проведен, воду консервируют добавлением 2-4 см хлороформа на 1 дм воды.

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ


Фотоэлектроколориметр, кюветы с толщиной рабочего слоя 2-3 см.

Термостат с регулятором температуры.

Плитка электрическая.

Фильтр бумажный “синяя лента”.

Посуда мерная лабораторная стеклянная по ГОСТ 1770 , ГОСТ 29227 и ГОСТ 29169 , вместимостью: колбы мерные 50, 100 и 1000 см, пипетки мерные 1-2 см с делениями 0,01 см, 5-10 см с делениями 0,1 см; пипетки мерные 5, 10, 20, 50 и 100 см без делений.

Стаканы стеклянные лабораторные по ГОСТ 25336 .

Аммоний молибденовокислый по ГОСТ 3765 .

Калий фосфорнокислый однозамещенный по ГОСТ 4198 .

Кислота соляная по ГОСТ 3118 .

Кислота серная по ГОСТ 4204 .

Олово двухлористое по ТУ 6-09-5384*.
________________
* ТУ, упомянутые здесь и далее по тексту, являются авторской разработкой. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

Кислота сульфаминовая.

Вода дистиллированная по ГОСТ 6709 .

Вся посуда должна быть обработана горячей соляной кислотой и тщательно промыта дистиллированной водой.

Все реактивы должны быть квалификации ч.д.а.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление основного стандартного раствора однозамещенного фосфорнокислого калия

0,7165 г , х.ч., предварительно высушенного в термостате в течение 2 ч при 105 С, растворяют в мерной колбе вместимостью 1000 см дистиллированной водой и доводят объем раствора до метки, добавляют 2 см хлороформа. 1 см раствора содержит 0,5 мг .

3.2. Приготовление I рабочего стандартного раствора однозамещенного фосфорнокислого калия

10 см основного раствора доводят до 1 дм дистиллированной водой. 1 см раствора содержит 0,005 мг .


3.3. Приготовление II рабочего стандартного раствора однозамещенного фосфорнокислого калия

50 см I рабочего раствора доводят до 250 см дистиллированной водой. 1 см раствора содержит 0,001 мг .

Необходимо применять свежеприготовленный раствор.

3.4. Приготовление молибденовокислого аммония (реактив I, кислый раствор)

25 г растворяют в 600 см дистиллированной воды. К этому раствору осторожно, охлаждая, добавляют 337 см концентрированной 98%-ной серной кислоты. После охлаждения раствор доводят дистиллированной водой до 1 дм. Раствор хранят в бутыли из темного стекла с притертой пробкой. Пользоваться реактивом можно через 48 ч после приготовления.

3.5. Приготовление молибденовокислого аммония (реактив II, слабокислый раствор)

10 г растворяют в 400 см дистиллированной воды и добавляют 7 см концентрированной 98%-ной серной кислоты. Раствор хранят в полиэтиленовой бутыли в темном месте. Устойчив около 3 мес. Пользоваться реактивом можно через 48 ч после приготовления.

3.6. Приготовление 37%-ного раствора серной кислоты

337 см концентрированной 98%-ной серной кислоты осторожно смешивают, приливая небольшими порциями к 600 см дистиллированной воды. После охлаждения раствор доводят дистиллированной водой до 1 дм.

3.7. Приготовление основного раствора двухлористого олова

1,95 г кристаллического невыветренного растворяют в 50 см 13,6%-ной соляной кислоты (18,4 см 37%-ной , не содержащей мышьяка, доводят до 50 см дистиллированной водой). Суспензию тщательно перемешивают, хранят в склянке, покрытой внутри слоем парафина. Перед употреблением суспензию хорошо перемешивают. Суспензия может быть применена непосредственно после приготовления.

3.8. Приготовление рабочего раствора двухлористого олова

2,5 см основного раствора (суспензия) доводят дистиллированной водой до 10 см.

Необходимо применять свежеприготовленный раствор. Раствор устойчив около 4 ч.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Определению мешают железо при концентрации, превышающей 1 мг/дм, растворимые силикаты более 25 мг/дм, нитриты. Влияние железа и силикатов устраняется соответствующим разбавлением исследуемой воды. Влияние нитритов при концентрации до 25 мг/дм устраняется добавлением к пробе 0,1 г сульфаминовой кислоты , которая вносится до добавления к пробе молибденовокислого аммония.

4.2. Определение ортофосфатов

В 50 см исследуемой воды (без разбавления можно определить не более 0,4 мг/дм), профильтрованной через плотный бумажный фильтр “синяя лента”, вносят те же реактивы и в той же последовательности, что и в образцовые растворы. Оптическая плотность раствора определяется электрофотоколориметром. Концентрация ортофосфатов устанавливается по калибровочному графику.

4.3. Определение полифосфатов

К 100 см исследуемой воды, профильтрованной через плотный бумажный фильтр, или к меньшему объему, доведенному до 100 см дистиллированной водой, добавляют 2 см 37%-ного раствора серной кислоты и кипятят 30 мин. Объем исследуемой воды поддерживают добавлением дистиллированной воды в пределах 50-90 см. После охлаждения раствора переносят его в мерную колбу вместимостью 100 см и доводят объем дистиллированной водой до метки. Добавляют 1 см слабокислого раствора молибденовокислого аммония (реактив II), перемешивают и через 5 мин приливают 0,1 см рабочего раствора двухлористого олова, затем снова перемешивают. Через 10-15 мин измеряют интенсивность окраски электрофотоколориметром.

4.4. Построение калибровочного графика

В мерные колбы вместимостью 50 см вносят пипеткой 0,0; 0,5; 1,0; 2,0; 5,0; 10,0; 20,0 см рабочего стандартного раствора фосфорнокислого калия (1 см - 0,001 мг ) и доводят объем раствора до метки дистиллированной водой. Содержание полифосфатов в образцовых растворах будет соответственно равно: 0,0; 0,01; 0,02; 0,04; 0,10; 0,20; 0,40 мг в 1 дм воды. В каждую колбу добавляют точно 1 см молибденовокислого аммония (реактив I, кислый раствор), перемешивают и через 5 мин микропипеткой вносят 0,1 см рабочего раствора двухлористого олова и перемешивают. Интенсивность окраски измеряют через 10-15 мин фотоэлектроколориметром, пользуясь красным светофильтром (=690-720 нм) и кюветами с толщиной слоя 2-3 см. Из полученных значений оптических плотностей вычитают оптическую плотность контрольной пробы и результаты наносят на график.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Содержание неорганических растворенных ортофосфатов , мг/дм, определяют по формуле

где - содержание ортофосфатов, найденное по калибровочному графику, мг/дм;

50 - приведение объема исследуемой воды к 50 см;


5.2. Содержание гидролизующихся полифосфатов , мг/дм, определяют по формуле

где - содержание полифосфатов, найденное по калибровочному графику, мг/дм;

100 - приведение объема исследуемой воды к 100 см;

- объем исследуемой воды, взятый для определения, см.

Допустимое расхождение между повторными определениями полифосфатов - 0,01 мг/дм, если их содержание не превышает 0,07 мг/дм; при более высоком их содержании - 15% отн.



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:

официальное издание

Контроль качества воды:
Сб. ГОСТов. - М.: ФГУП
"СТАНДАРТИНФОРМ", 2010

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ

ОКРУЖАЮЩЕЙ СРЕДЫ (РОСГИДРОМЕТ)

РУКОВОДЯЩИЙ ДОКУМЕНТ

МАССОВАЯ КОНЦЕНТРАЦИЯ ФОСФАТОВ И ПОЛИФОСФАТОВ В ВОДАХ.

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

РД 52.24.

Дата введения -

Предисловие

1 РАЗРАБОТАН ГУ «Гидрохимический институт»

2 РАЗРАБОТЧИКИ, канд. хим. наук, канд. хим. наук, канд. хим. наук, .

3 СОГЛАСОВАН с Начальником УМЗА и ГУ «ЦКБ ГМП» Росгидромета

4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 27 марта 2006 г.

5 АТТЕСТОВАН ГУ «Гидрохимический институт», свидетельство об аттестации № 33.24-2005 от 01.01.2001 г.

6 ЗАРЕГИСТРИРОВАН ГУ ЦКБ ГМП за номером РД 52.24. от 01.01.2001 г.

Внесен в Федеральный реестр методик выполнения измерений, применяемых в сферах распространения государственного метрологического контроля и надзора за номером ФР. 1.31.2006.02515

7 ВЗАМЕН РД 52.24.382-95 «Методические указания. Методика выполнения измерений массовой концентрации фосфатов и полифосфатов в водах фотометрическим методом »

Введение

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительности прекращается, однако избыток их также приводит к негативным последствиям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, выветривания и растворения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными водами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах , флотореагентов и др.

Неорганические соединения фосфора в природных водах представлены в виде ортофосфатов и полифосфатов (к последним причисляются также пирофосфаты), причем преобладающей формой обычно являются ортофосфаты - соли ортофосфорной кислоты. Сумму неорганических соединений фосфора часто обозначают термином «фосфор минеральный»; данный термин принят и в настоящей методике выполнения измерений (иногда термин «фосфор минеральный» применяют по отношению к ортофосфатам, однако несмотря на то, что ортофосфаты являются обычно преобладающей формой, такое использование термина некорректно). Если используется термин «фосфаты», обычно имеют в виду ортофосфаты, в противном случае приводят уточнение, например, полифосфаты, пирофосфаты и т. п. Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН (таблица 1).

Таблица 1 Мольные доли, %, производных фосфорной кислоты в зависимости от рН воды

В водах соединения фосфора, как минеральные, так и органические могут присутствовать в растворенном, коллоидном и взвешенном состоянии. Переход соединений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят определение. В том случае, когда анализируют фильтрованную пробу, говорят о растворенных формах, в противном случае - о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворенных фосфатов (ортофосфатов) осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов требуется предварительно перевести их в фосфаты путем кислого гидролиза. Следует, однако, отметить, что разграничение приведенных форм не является строгим. При определении фосфатов из-за кислой реакций среды может гидролизоваться некоторая часть полифосфатов или лабильных органических соединений фосфора, но доля таких соединений невелика и на практике этим пренебрегают. При определении растворенных форм также может возникать неопределенность из-за возможности быстрого перехода разных форм фосфора друг в друга или прохождения через фильтр коллоидных веществ с размером частиц меньше, чем размер пор фильтра, поэтому иногда используют термин не «растворенные» формы, а «фильтруемые».

По причинам, приведенным выше, для получения сравнимых результатов определения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа, в частности при определении растворенных форм проба должна быть отфильтрована как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм3. Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена сезонным колебаниям, поскольку она зависит от интенсивности процессов фотосинтеза и биохимического разложения органических веществ. Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные - осенью и зимой.

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нерастворимых фосфатов.

Предельно допустимая концентрация фосфатов (в пересчете на фосфор) в воде водных объектов рыбохозяйственного назначения составляет:

Для олиготрофных водных объектов 0,05 мг/дм3;

Для мезотрофных - 0,15 мг/дм3;

Для эвтрофных - 0,20 мг/дм3.

Предельно допустимая концентрация фосфатов для водных объектов хозяйственно-питьевого и культурно-бытового назначения не установлена, в них нормируется только содержание полифосфатов. Предельно допустимая концентрация полифосфатов составляет 3,5 мг/дм3 в пересчете на фосфат-ион и 1,1 мг/дм3 в пересчете на фосфор.

1 Область применения

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее методика) массовой концентрации неорганических соединений фосфора, фосфатов и полифосфатов - в сумме (фосфор минеральный) и раздельно в пробах природных и очищенных сточных вод в диапазоне от 0,010 до 0,200 мг/дм3 в пересчете на фосфор фотометрическим методом.

При анализе проб воды с массовой концентрацией фосфора, превышающей 0,20 мг/дм3, допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р Вода. Общие требования к отбору проб

3 Приписанные характеристики погрешности измерения

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 2.

При выполнении измерений в пробах с массовой концентрацией фосфора свыше 0,200 мг/дм3 после соответствующего разбавления погрешность измерения не превышает величины D×h, где D - погрешность измерения концентрации фосфора в разбавленной пробе; h - степень разбавления.

Предел обнаружения фосфатов 0,002 мг/дм3, полифосфатов 0,005 мг/дм3 (в пересчете на фосфор), фосфора минерального - 0,004 мг/дм3.

3.2 Значения показателя точности методики используют при:

Оформлении результатов измерений, выдаваемых лабораторией;

Оценке деятельности лабораторий на качество проведения измерений;

Оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Таблица 2 - Диапазон измерений, значения характеристик погрешности и ее составляющих (Р=0,95)

От 0,010 до 0,200 включ.

Фосфор минеральный

От 0,010 до 0,125 включ.

Св. 0,125 до 0,200 включ.

4 Средства измерений, вспомогательные устройства, реактивы, материалы

4.1 Средства измерений, вспомогательные устройства

При выполнении измерений применяют следующие средства измерений и другие технические средства:

4.1.1 Фотометр или спектрофотометр любого типа (КФК-3, КФК-2, СФ-46, СФ-56 и др.)

4.1.2 Весы лабораторные высокого (II) класса точности по ГОСТ

4.1.3 Весы лабораторные обычного (IV) класса точности по ГОСТ с пределом взвешивания 200 г.

4.1.4 Государственный стандартный образец состава раствора фосфат-ионов ГСО 7260-96 (далее - ГСО).

6.1 При выполнении измерений массовой концентрации орто - и полифосфатов в пробах поверхностных вод суши и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007.

6.4 Вредно действующие вещества подлежат сбору и утилизации в соответствии с установленными правилами.

6.5 Дополнительных требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года, освоившие методику.

8 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха (22±5) °С;

атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

напряжение в сети (220±10) В;

частота переменного тока в сети питания (50±1) Гц.

9 Отбор и хранение проб

Отбор проб для определения фосфатов и полифосфатов производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Пробы помещают в стеклянную посуду, полиэтиленовая посуда допускается только при консервации пробы замораживанием.

Вследствие биохимической неустойчивости соединения фосфора следует определять как можно быстрее после отбора пробы. Если анализ не может быть выполнен в течение 4 ч после отбора, пробу консервируют, добавляя 2-4 см3 хлороформа на 1 дм3 воды, и хранят при температуре от 3 °С до 5 °С не более 3 дней. Более длительное хранение возможно при замораживании пробы. Следует иметь в виду, что использование консервации не дает гарантии полной сохранности проб.

При определении растворенных форм фосфора фильтрование проб осуществляют немедленно после отбора пробы.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

10.1.1 Раствор серной кислоты, 34 %-ный (по объему)

Осторожно при непрерывном перемешивании приливают 170 см3 концентрированной серной кислоты к 370 см3 дистиллированной воды. После охлаждения раствор переносят в толстостенную склянку.

10.1.2 Раствор серной кислоты, 2,5 моль/дм3

Осторожно приливают 70 см3 серной кислоты к 440 см3 дистиллированной воды, непрерывно перемешивая смесь. Раствор применяют после охлаждения.

10.1.3 Раствор молибдата аммония

Растворяют 20 г молибдата аммония (NН4)6Мо7О24×4Н2О в 500 см3 теплой дистиллированной воды. Если соль не растворяется, оставляют раствор до следующего дня. Если раствор остается мутным, его фильтруют через бумажный обеззоленный фильтр "белая лента". Хранят раствор в темной склянке не более месяца.

10.1.4 Раствор аскорбиновой кислоты

Растворяют 1,76 г аскорбиновой кислоты в 100 см3 дистиллированной воды. Используют раствор в день приготовления, либо хранят в холодильнике не более 5 дней.

10.1.5 Раствор антимонилтартрата калия

Растворяют 0,274 г антимонилтартрата калия K(SbO)C4H4O6×1/2Н2О в 100 см3 дистиллированной воды. Раствор хранят в темной склянке до появления белого хлопьевидного осадка.

10.1.6 Смешанный реактив

Смешивают 125 см3 раствора серной кислоты, 2,5 моль/дм3, с 37,5 см3 раствора молибдата аммония, добавляют 75 см3 раствора аскорбиновой кислоты и затем приливают 12,5 см3 раствора антимонилтартрата калия. Полученную смесь тщательно перемешивают. Реактив можно хранить не более 24 ч.

10.1.7 Раствор для компенсации собственной оптической плотности воды, обусловленной цветностью или мутностью

Смешивают 42 см3 раствора серной кислоты, 2,5 моль/дм3, 17 см3 дистиллированной воды и 25 см3 раствора аскорбиновой кислоты. Полученную смесь тщательно перемешивают. Раствор хранят не более 24 ч.

10.1.8 Раствор тиосульфата натрия, 12 г/дм3

Растворяют 1,2 г тиосульфата натрия в 100 см3 дистиллированной воды. Хранят раствор в темной склянке не более 3 мес.

10.1.9 Раствор гидроксида натрия, 10 %-ный

Растворяют 25 г гидроксида натрия в 225 см3 дистиллированной воды. Хранят в полиэтиленовой посуде с плотно завинчивающейся пробкой.

10.1.10 Раствор фенолфталеина, 1 %-ный

Растворяют 0,4 г фенолфталеина в 50 см3 этилового спирта. Хранят в темной плотно закрытой склянке.

10.1.11 Раствор соляной кислоты, 5 %-ный

К 360 см3 дистиллированной воды приливают 50 см3 концентрированной соляной кислоты и перемешивают.

10.2 Приготовление градуировочных растворов

10.2.1 Градуировочные растворы готовят из ГСО с массовой концентрацией ортофосфатов 0,500 мг/см3, что в пересчете на фосфор составляет 0,1631 мг/см3.

Вскрывают ампулу и ее содержимое переносят в сухую чистую пробирку. Для приготовления градуировочного раствора № 1 отбирают 4,90 см3 образца с помощью чистой сухой градуированной пипетки вместимостью 5 см3 и переносят в мерную колбу вместимостью 100 см3. Доводят объем в колбе до метки свежеперегнанной дистиллированной водой и перемешивают. Массовая концентрация фосфора в градуировочном растворе № 1 составит 7,99 мг/дм3 (если концентрация фосфат-ионов в ГСО не равна точно 0,500 мг/см3, рассчитывают массовую концентрацию фосфора в градуировочном растворе № 1 в соответствии с концентрацией конкретного образца). Раствор хранят в плотно закрытой склянке в холодильнике не более 2-х недель.

Для приготовления градуировочного раствора № 2 пипеткой с одной отметкой отбирают 25 см3 градуировочного раствора № 1, помещают его в мерную колбу вместимостью 200 см3 и доводят до метки дистиллированной водой. Массовая концентрация фосфора в градуировочном растворе № 2 составит 1,00 мг/дм3. Раствор хранению не подлежит.

10.2.2 При отсутствии ГСО допускается использовать аттестованный раствор, приготовленный из дигидрофосфата калия. Методика приготовления аттестованного раствора приведена в приложении А.

10.3 Установление градуировочной зависимости

Для приготовления образцов для градуировки в мерные колбы вместимостью 50 см3 градуированными пипетками вместимостью 1, 5 см3 и 10 см3 вносят 0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; 8,0; 10,0 см3 градуировочного раствора № 2 с массовой концентрацией фосфора фосфатов 1,00 мг/дм3, доводят объём растворов до меток дистиллированной водой и тщательно перемешивают. Массовые концентрации фосфора в полученных образцах равны соответственно 0; 0,010; 0,020; 0,040; 0,060; 0,080; 0,120; 0,160; 0,200 мг/дм3. Содержимое каждой колбы полностью переносят в сухие конические или плоскодонные колбы вместимостью 100 см3 и далее выполняют определение в соответствии с 11.1. Значение оптической плотности холостого опыта (раствора, не содержащего фосфатов) вычитают из оптической плотности растворов, содержащих фосфаты.

Градуировочную зависимость оптической плотности от массовой концентрации фосфора фосфатов рассчитывают методом наименьших квадратов.

Градуировочную зависимость устанавливают один раз в год, а также при замене измерительного прибора.

10.4. Контроль стабильности градуировочной характеристики

10.4.1 Контроль стабильности градуировочной характеристики проводят при приготовлении нового раствора молибдата аммония. Средствами контроля являются образцы, используемые для установления градуировочной зависимости по 10.3 (не менее 3 образцов). Градуировочная характеристика считается стабильной при выполнении следующих условий:

|X - C| £ sR, (1)

где X - результат контрольного измерения массовой концентрации фосфора в образце, мг/дм3;

С - приписанное значение массовой концентрации фосфора в образце, мг/дм3;

sr - показатель воспроизводимости для концентрации С, мг/дм3 (таблица 2).

Если условие стабильности не выполняется для одного образца для градуировки, необходимо выполнить повторное измерение этого образца для исключения результата, содержащего грубую погрешность. При повторном невыполнении условия, выясняют причины нестабильности, устраняют их и повторяют измерение с использованием других образцов, предусмотренных методикой. Если градуировочная характеристика вновь не будет удовлетворять условию (1), устанавливают новую градуировочную зависимость.

10.4.2 При выполнении условия (1) учитывают знак разности между измеренными и приписанными значениями массовой концентрации фосфора в образцах. Эта разность должна иметь как положительное, так и отрицательное значение, если же все значения имеют один знак, это говорит о наличии систематического отклонения. В таком случае требуется установить новую градуировочную зависимость.

10.5 Подготовка посуды для определения соединений фосфора

Посуду, используемую для определения соединений фосфора, периодически обрабатывают горячим 5 %-ным раствором соляной кислоты, после чего посуду тщательно промывают дистиллированной водой. Новую посуду или посуду после анализа сильно загрязненных проб заливают на несколько часов концентрированной серной кислотой, затем промывают водой. Синий налет на стенках колб можно устранить промыванием 10 %-ным раствором щелочи. Использовать посуду для других определений не рекомендуется.

11 Выполнение измерений

11.1 Выполнение измерений массовой концентрации фосфатов при отсутствии мешающих влияний

Отмеривают мерным цилиндром вместимостью 50 см3 две аликвоты отфильтрованной анализируемой воды объемом 50 см3 и помещают в две сухие конические или плоскодонные колбы вместимостью 100 см3, добавляют в каждую 10 см3 смешанного реактива и содержимое колб хорошо перемешивают. Через 10-15 мин измеряют оптическую плотность раствора на спектрофотометре или фотометре с непрерывной разверткой спектра при длине волны 882 нм (на фотометре, снабженном светофильтрами - при 670-750 нм) в кювете с толщиной слоя 5 см относительно дистиллированной воды.

Одновременно выполняют два параллельных измерения оптической плотности холостых проб, в качестве которых используют 50 см3 дистиллированной воды.

Если оптическая плотность пробы выше таковой для последней точки градуировочной зависимости, повторяют измерение, предварительно разбавив исходную пробу воды дистиллированной водой. Для этого отбирают пипеткой такой объем анализируемой воды, чтобы при разбавлении в мерной колбе вместимостью 50 см3 полученная концентрация фосфора находилась в пределах от 0,1 до 0,2 мг/дм3.

11.2 Устранение мешающих влияний

11.2.1 Если проба воды интенсивно окрашена или слегка мутная, следует отдельно измерить оптическую плотность пробы, к которой вместо смешанного реактива добавлено 10 см3 раствора для компенсации собственной оптической плотности воды (см. 10.1.7).

В том случае, когда пробу перед выполнением измерений массовой концентрации фосфатов разбавляли, собственную оптическую плотность следует учитывать также для воды, разбавленной в той же пропорции.

11.2.2 Для устранения влияния сероводорода и сульфидов при содержании их более 3 мг/дм3, в пробу (объемом примерно 200 см3) добавляют несколько миллиграммов кристаллического перманганата калия и перемешивают 1-2 мин. Раствор при этом должен остаться слабо-розовым, если же он обесцветился, следует добавить ещё немного перманганата. После этого избыток перманганата восстанавливают, добавляя по каплям до обесцвечивания раствор для компенсации собственной оптической плотности воды (см. 10.1.7). Если при этом выпадает осадок, раствор фильтруют через бумажный обеззоленный фильтр "белая лента", предварительно промытый горячей дистиллированной водой. Первую порцию фильтрата отбрасывают, из оставшейся отбирают 50 см3 пробы в колбу и добавляют смешанный реактив.

11.2.3 Для устранения мешающего влияния мышьяка (V) при концентрации последнего более 50 мкг/дм3, его восстанавливают, добавляя к 50 см3 пробы 1 см3 раствора тиосульфата натрия, выдерживают 10 мин, затем добавляют смешанный реактив. Измерение оптической плотности следует в этом случае проводить через 10-11 мин после добавления смешанного реактива (не позже!!!).

11.2.4 Влияние повышенной концентрации нитритов устраняют добавлением к пробе нескольких кристалликов сульфаминовой кислоты.

11.2.5 Влияние хрома (VI) при концентрации более 2 мг/дм3 устраняют, добавляя 10 капель раствора для компенсации собственной оптической плотности воды на 50 см3 пробы и выдерживая 5 мин, после чего добавляют смешанный реактив. Если к пробе добавляли тиосульфат натрия, то проводить дополнительно устранение влияния хрома (VI) не следует.

11.2.6 Мешающее влияние на измерение фосфатов оказывает кремний при концентрации более 200 мг/дм3, маловероятной для поверхностных или очищенных сточных вод.

11.2.7 При достаточно высоком содержании фосфатов мешающее влияние перечисленных веществ можно также устранить разбавлением пробы в такой пропорции, при которой концентрации мешающих веществ станут ниже указанных в 11.

11.3 Выполнение измерений массовой концентрации фосфора минерального (суммы фосфатов и полифосфатов)

Для определения растворенного фосфора минерального в термостойкую коническую или плоскодонную колбу вместимостью 250 см3 отбирают 100 см3 отфильтрованной анализируемой воды, содержащей не более 0,020 мг фосфора (или меньший объем, доведенный до 100 см3 дистиллированной водой), прибавляют 2 см3 34 %-ного раствора серной кислоты. Колбу накрывают часовым стеклом или лабораторной воронкой диаметром 56 мм и кипятят пробу на слабо нагретой электроплитке или песчаной бане 30 мин.

После охлаждения в пробу добавляют 1-2 капли раствора фенолфталеина и нейтрализуют 10 %-ным раствором гидроксида натрия до появления бледно-розовой окраски индикатора. Следует избегать избытка щелочи. Переносят пробу в мерную колбу вместимостью 100 см3, при необходимости доводят до метки дистиллированной водой и перемешивают. Если в пробе появился осадок, ее фильтруют через фильтр «белая лента», предварительно промытый горячей дистиллированной водой. Первую порцию фильтрата отбрасывают, из остальной отбирают 50 см3 пробы в коническую колбу вместимостью 100 см3 и выполняют измерение массовой концентрации фосфатов, как описано в 11.1. Для каждой пробы выполняют два параллельных определения. Холостой опыт выполняют аналогично, используя 100 см3 дистиллированной воды.

При выполнении измерений массовой концентрации фосфора минерального следует учитывать только возможное мешающее влияние цветности и мышьяка (V). Устранение мешающего влияния производится, как описано в 11.2.

При необходимости выполнения измерений общего содержания растворенных и взвешенных форм минерального фосфора для кипячения отбирают аликвоту тщательно перемешанной нефильтрованной пробы. В этом случае стадия фильтрования после нейтрализации пробы является обязательной.

12 Вычисление и оформление результатов измерений

12.1 Вычисление результатов измерения массовой концентрации фосфатов (в пересчете на фосфор)

12.1.1 Вычисляют значение оптической плотности Ах, соответствующее концентрации фосфора фосфатов в пробе воды по формуле

Ах = А - А1 - А2, (2)

где А - значение оптической плотности анализируемой пробы, в которую добавлен смешанный реактив;

A1 - значение собственной оптической плотности анализируемой воды (если ее измерение не проводилось, A1 = 0);

А2 - среднее арифметическое значение оптической плотности холостой пробы.

12.1.2 По градуировочной зависимости находят массовую концентрацию фосфора, соответствующую рассчитанному значению оптической плотности.

Массовую концентрацию фосфатов (ортофосфатов) в пересчете на фосфор Хо. ф, мг/дм3, в исходной пробе воды рассчитывают по формуле

100%" style="width:100.0%;border-collapse:collapse">

12.2 Вычисление результатов измерения массовой концентрации фосфора минерального

Массовую концентрацию фосфора минерального (суммы орто - и полифосфатов в пересчете на фосфор) Хф. м, мг/дм3, в анализируемой пробе воды рассчитывают по формуле

https://pandia.ru/text/79/069/images/image006_36.gif" width="39" height="20 src="> мг/дм3 (Р = 0,95), (6)

где https://pandia.ru/text/79/069/images/image008_30.gif" width="180" height="52 src="> (7)

где Dоф - значение характеристики погрешности, соответствующее массовой концентрации фосфора фосфатов Хоф, мг/дм3;

Dфм - значение характеристики погрешности, соответствующее массовой концентрации фосфора минерального Хфм, мг/дм3.

Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

12.5 Допустимо представлять результат в виде

https://pandia.ru/text/79/069/images/image009_29.gif" width="99" height="23 src="> (12)

где https://pandia.ru/text/79/069/images/image007_33.gif" width="15" height="17 src="> - результат контрольного измерения массовой концентрации определяемой формы фосфора в рабочей пробе, мг/дм3;

С - величина добавки, мг/дм3.

13.3.3 Норматив контроля погрешности К, мг/дм3, рассчитывают по формуле

https://pandia.ru/text/79/069/images/image012_20.gif" width="28" height="20 src="> - значения характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации определяемой формы фосфора в пробе с добавкой, мг/дм3;

DлХ - значения характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации определяемой формы фосфора в рабочей пробе, мг/дм3.

Примечание - Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам =0,84×100%" style="width:100.0%;border-collapse:collapse">

Наименование характеристики

Значение характеристики для аттестованного раствора

Аттестованное значение массовой концентрации фосфора, мг/дм3

Границы погрешности аттестованного значения массовой концентрации фосфора (Р=0,95), мг/дм3

А.3 Средства измерений, вспомогательные устройства, реактивы

А.3.1 Весы лабораторные высокого (II) класса точности по ГОСТ

А.3.2 Колбы мерные 2 класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью:

500 см3 - 1 шт.

100 см3 - 2 шт.

А.3.3. Пипетки с одной отметкой 2 класса точности исполнения 2 по ГОСТ вместимостью:

10 см3 - 2 шт.

А.3.4. Пипетка градуированная 2 класса точности исполнения 1 по ГОСТ вместимостью:

2 см3 - 1шт.

А.3.5 Стаканчик для взвешивания (бюкс) СВ-19/9 по ГОСТ.

А.3.6 Воронка лабораторная по ГОСТ диаметром 56 мм.

А.3.7 Шпатель.

А.3.8 Промывалка.

А.3.9 Эксикатор исполнения 2 с диаметром корпуса 140 мм или 190 мм по ГОСТ с безводным хлоридом кальция.

А.3.10 Шкаф сушильный общелабораторного назначения.

А.4 Исходные компоненты аттестованных растворов

А.4.1 Калий фосфорнокислый однозамещенный (дигидрофосфат калия) по ГОСТ 4198-75, х. ч. с содержанием основного вещества КН2РО4 не менее 99,5 %.

А.4.2 Вода дистиллированная по ГОСТ 6709-72.

А.4.3 Хлороформ по ГОСТ, очищенный.

А.5 Процедура приготовления аттестованных растворов дигидрофосфата калия

А.5.1 Приготовление аттестованного раствора AP1-P

На аналитических весах взвешивают в бюксе с точностью до четвертого знака после запятой 0,220 г КН2РО4, предварительно высушенного в сушильном шкафу при температуре 105 °С - 110 °С в течение 1 ч и охлажденного до комнатной температуры в эксикаторе над хлоридом кальция. Количественно переносят навеску в мерную колбу вместимостью 500 см3, растворяют в свежеперегнанной дистиллированной воде, добавляют 2 см3 хлороформа, доводят объём раствора до метки, и перемешивают. Переносят раствор в темную склянку с плотно закрывающейся пробкой.

Полученному раствору приписывают массовую концентрацию фосфора 100 мг/дм3.

А.5.2 Приготовление аттестованного раствора АР2-Р

Пипеткой с одной отметкой отбирают 10 см3 раствора АР1-Р, помещают его в мерную колбу вместимостью 100 см3, доводят до метки свежеперегнанной дистиллированной водой и перемешивают. Переносят раствор в темную склянку с плотно закрывающейся пробкой.

Полученному раствору приписывают массовую концентрацию фосфора 10,0 мг/дм3.

А.5.3 Приготовление аттестованного раствора АР3-Р

Пипеткой с одной отметкой отбирают 10 см3 раствора АР2-Р, помещают его в мерную колбу вместимостью 100 см3, доводят до метки свежеперегнанной дистиллированной водой и перемешивают. Переносят раствор в темную склянку с плотно закрывающейся пробкой.

Полученному раствору приписывают массовую концентрацию фосфора 1,00 мг/дм3.

А.6 Расчет метрологических характеристик аттестованных растворов

А.6.1 Аттестованное значение массовой концентрации фосфора в растворе АР1-Р С1, мг/дм3, рассчитывают по формуле

https://pandia.ru/text/79/069/images/image016_14.gif" width="53" height="35 src="> (А.2)

А.6.3 Аттестованное значение массовой концентрации фосфора в растворе АР3-Р С3, мг/дм3, рассчитывают по формуле

https://pandia.ru/text/79/069/images/image018_10.gif" width="205" height="49 src="> (А.4)

где С1 - приписанное раствору значение массовой концентрации фосфора, мг/дм3;

Dm - предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения m;

m - массовая доля основного вещества (КН2РО4) в реактиве, приписанная реактиву квалификации х. ч.;

Dm - предельная возможная погрешность взвешивания, г;

m - масса навески дигидрофосфата калия, г;

DV - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см3;

V - вместимость мерной колбы, см3.

Погрешность приготовления аттестованного раствора АР1-Р равна:

А.5.5 Расчет погрешности приготовления аттестованных растворов АР2-Р (D2) и АР3-Р (D3) с массовой концентрацией фосфора 10,0 и 1,00 мг/дм3, соответственно, выполняют по формуле

https://pandia.ru/text/79/069/images/image021_7.gif" width="24" height="23 src="> - предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см3;

V1 - вместимость мерной колбы, см3;

https://pandia.ru/text/79/069/images/image023_7.gif" width="312 height=45" height="45">

Погрешность приготовления аттестованного раствора АР3-Р равна

А.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

А.8 Требования к квалификации операторов

Аттестованные растворы может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 мес.

А.9 Требования к маркировке

На склянки с аттестованными растворами должны быть наклеены этикетки с указанием условного обозначения раствора, массовой концентрации фосфора, погрешности ее установления и даты приготовления.

А.10 Условия хранения

Аттестованный раствор АР1-Р хранят не более 3 мес при температуре от 4 °С до 8 °С. Аттестованный раствор АР2-Р хранят не более 2-х недель при температуре от 4 °С до 8 °С. Аттестованный раствор АР3-Р хранению не подлежит.

Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

СВИДЕТЕЛЬСТВО № 33.24-2005

об аттестации методики выполнения измерений

Методика выполнения измерений массовой концентрации фосфатов и полифосфатов в водах фотометрическим методом, разработанная ГУ «Гидрохимический институт» (ГУ ГХИ) и регламентированная РД 52.24. аттестована в соответствии с ГОСТ Р 8.563-96 с изменениями 2002 г.

Аттестация осуществлена по результатам экспериментальных исследований.

В результате аттестации МВИ установлено:

1. МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

Диапазон измерений, значения характеристик погрешности и ее составляющих (Р=0,95)

Диапазон измерений массовой концентрации фосфора, X, мг/дм3

Показатель повторяемости (среднеквадратическое отклонение повторяемости) sr, мг/дм3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) sR, мг/дм3

Показатель правильности (границы систематической погрешности при вероятности Р=0,95) ±Dс, мг/дм3

Показатель точности (границы погрешности при вероятности Р=0,95) ±D, мг/дм3

От 0,010 до 0,200 включ.

Фосфор минеральный

От 0,010 до 0,125 включ.

Св. 0,125 до 0,200 включ.

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности Р=0,95

Диапазон измерений массовой концентрации фосфора, X, мг/дм3

Предел повторяемости (для двух результатов параллельных определений) г, мг/дм3

Предел воспроизводимости (значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях, при вероятности Р=0,95), R, мг/дм3

От 0,010 до 0,200 включ.

Фосфор минеральный

От 0,010 до 0,125 включ.

Св. 0,125 до 0,200 включ.

3 При реализации методики в лаборатории обеспечивают:

Оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируются в Руководстве по качеству лаборатории.

Метод основан на гидролизе полифосфатов в кислой среде. Происходит переход полифосфатов в растворенное ортофосфа-ты, которые определяют колориметрическим способом в виде фосфорномо-либденового комплекса, окрашенного в синий цвет. В отдельной пробе выяв­ляют ортофосфаты, первоначально содержащиеся в воде, количество кото­рых вычитают из результата, полученного при определении фосфатов. Пробы воды отбирают в хорошо выщелоченные склянки с притертыми пробками.

Подготовка анализа состоит из следующих этапов:

1) приготовление основного стандартного раствора однозамещенного фосфорнокислого калия (0,7165 г препарата, предварительно высушенного в
термостате в течение 2 ч при 105 0 С, растворяют в мерной колбе на 1 л
дистиллированной водой и доводят до метки, добавляя 2 мл хлороформа) -
1 мл раствора содержит 0,5 мг иона фосфата;

2) приготовление первого рабочего стандартного состава однозамещенно­го фосфорнокислого калия - 10 мл основного раствора доводят до 1 л дистиллированной водой, 1 мл раствора содержит 0,005 мг иона фосфата;

3) приготовление второго рабочего стандартного состава однозамещенно­го фосфорнокислого калия - 50 мл первого раствора доводят до 250 мл
дистиллированной водой. 1 мл раствора содержит 0,001 мг иона фосфата;
используют свежеполученный раствор;

4) приготовление молибденовокислого аммония (реактив 1, кислый раствор) - 25 г препарата растворяют в 600 мл дистиллированной воды. К этому
раствору, осторожно охлаждая, добавляют 337 мл концентрированной 98%-й
серной кислоты. Затем доводят дистиллированной водой до 1 л. Раствор
хранят в бутыли из темного стекла с притертой пробкой, используют его
через 48 ч после приготовления;

5) приготовление молибденовокислого аммония (реактив 2, слабокислый
раствор) - 10 г препарата растворяют в 400 мл дистиллированной воды.
К этому раствору, осторожно охлаждая, добавляют 7 мл концентрирован­ной 98%-й серной кислоты. Затем доводят дистиллированной водой до 1 л. Раствор хранят в бутыли из темного стекла с притертой пробкой, используют его через 48 ч после приготовления;

6)приготовление 37%-го раствора серной кислоты - 33,7 мл концент­рированной 98%-й серной кислоты осторожно смешивают, приливая не­
большими порциями к 60 мл дистиллированной воды. После охлаждения
раствор доводят до 100 мл;

7)приготовление основного раствора двуокисного олова - 1,95 г кри­сталлического не выветренного препарата растворяют в 50 мл 13,6%-й соляной кислоты (18,4 мл 37%-й кислоты, не содержащей мышьяка, доводят до
50 мл дистиллированной водой). Суспензию тщательно перемешивают, ис­пользуют сразу после получения или хранят в склянке, покрытой внутри
слоем парафина;


8)приготовление рабочего раствора двухлористого олова - 2,5 мл основного раствора доводят дистиллированной водой до 10 мл, применяют
свежий раствор, устойчивость его около 4 ч.

Определению полифосфатов мешают железо при концентрации больше 1 мг/л, растворимые силикаты - более 25 мг/л, нитриты. Влияние желе­за устраняется соответствующим разбавлением исследуемой водой. Влия­ние нитритов при концентрации до 25 мг/л устраняется добавлением к пробе 0,1 г сульфаминовой кислоты (ее вносят до молибденовокислого ам­мония).

Методика определения ортофосфатов . В 50 мл исследуемой воды, пропущенной через плотный бумажный фильтр («синяя лента»), вно­сят те же реактивы, что и в образцовые растворы. Оптическую плотность раствора определяют при помощи ФЭК, а концентрацию ортофосфатов уста­навливают по калибровочному графику.

Методика определения полифосфатов . К 100 мл исследуе­мой воды, пропущенной через плотный бумажный фильтр, или к меньшему объему, доведенному до 10 мл дистиллированной водой, добавляют 2 мл 37%-го раствора серной кислоты и кипятят 30 мин. Объем исследуемой воды поддерживают добавлением 50-90 мл дистиллированной воды. После охлаждения раствор переносят в мерную колбу на 100 мл и доводят объем до метки. Добавляют 1 мл слабокислого раствора молибденовокислого раствора (реактив 2); перемешивают и через 5 мин приливают 0,1 мл рабочего раство­ра двухлористого олова и снова перемешивают. Через 10-15 мин измеряют интенсивность окраски на ФЭК.

Построение калибровочного графика : в мерные колбы на 50 мл вносят пипеткой 0; 0,5; 1; 2; 5, 10 и 20 мл рабочего стандартного раствора фосфорнокислого калия (1 мг - 0,001 мг иона фосфата) и доводят объем до его метки дистиллированной водой.

Содержание полифосфатов в образцовых растворах будет соответственно: 0; 0,01; 0,02; 0,04; 0,1; 0,2 и 0,4 мг иона фосфата в 1 л воды. В каждую колбу добавляют точно 1 мл молибденовокислого аммония (реактив 1), а через 5 мин туда пипеткой вносят 0,1 мл рабочего раствора двухлористого олова и снова перемешивают. Интенсивность окраски измеряют через 10-15 мин на ФЭК, при красном светофильтре и кюветах толщиной слоя 2-3 см.

Из полученных величин оптических плотностей вычитают оптическую плот­ность контрольной пробы и результаты наносят на график.

Суммарное содержание фосфора, присутствующего в воде открытых природных водоемов в виде растворенных минералов, а также в составе органических соединений, называют общим. Первоочередным фактором, определяющим концентрацию данного элемента, подобно азоту, является ионный обмен, происходящий между его минерально-органическими формами и организмами, населяющими конкретный водный объект.

Формы фосфора в природных водах

Таблица 1. Формы фосфорсодержащих соединений в воде

Показатели насыщенности общим растворенным фосфором для незагрязненных природных водоемов ограничиваются пределами 5-200 мкг/дм 3 .

Этот элемент выполняет функцию мощного биогенного агента. В природных водоемах зачастую именно суммарное содержание минерально-органического фосфора становится фактором, сдерживающим дальнейший рост продуктивности. Попадание в естественные источники избыточных объемов фосфорсодержащих соединений запускает механизмы неконтролируемого разрастания растительной биомассы. Малопроточные и непроточные объекты более других подвержены изменениям в трофическом статусе, которые сопровождаются полной перестройкой всей структуры водоема: повышается концентрация бактерий и солей, начинают преобладать гнилостные процессы, вследствие чего вода мутнеет.

Фосфор в водоём поступает из ряда источников, среди которых есть и отходы некоторых производств, но большая часть его соединений попадает в водоемы в результате сельскохозяйственной и бытовой деятельностью человека. Этот элемент применяется в составе минеральных удобрений. Поверхностными стоками с одного орошаемого гектара смывается порядка полкилограмма фосфора. Каждые сутки с ферм проникает в водоемы до 0.01-0.05 кг фосфорсодержащих веществ на одно животное. Не подвергавшиеся очистке и неочищенные бытовые стоки ежедневно несут по 0.003-0.006 кг от каждого жителя.

Одним из процессов, в таких условиях влияющих на эвтрофикацию, является процветание цианобактерий. Многие виды сине-зеленых водорослей токсичны. Они вырабатывают органические вещества, входящие в группу ядов нервнопаралитического действия. Выделения цианобактерий могут вызывать дерматозы и становиться причиной расстройств органов ЖКТ. Попадание внутрь больших масс сине-зеленых водорослей опасно развитием паралича.

На основании нормативов ГСМОС/GEMS - системы глобального мониторинга окружающей среды - уровень фосфора служит важнейшим критерием при определении трофического состояния открытых водоемов естественного происхождения. Определение насыщенности общим фосфором (в расчет принимаются растворенные и взвешенные формы, органика и минеральные соединения) стало обязательным пунктом в программе контроля состава водных объектов.

Фосфор органический

Синтезированные промышленными способами фосфорорганические соединения в данной категории не рассматриваются - сюда относят только вещества, поступающие в результате жизнедеятельности и разложения организмов, населяющих водоем, и вследствие обменных процессов, происходящих с отложениями на его дне. Органические фосфорные соединения присутствуют в естественных открытых водоемах истинно растворённом и коллоидном состояниях, а также во взвесях.

Фосфор минеральный

Минерально-фосфорные конгломерации поступают в водоемы из-за хим. выветривания и растворения ортофосфатсодержащих пород - апатитов и фосфоритов. Образуются они также и в результате разложения останков представителей флоры и фауны. В больших количествах фосфор минерального происхождения заносится со стоками содержащими удобрения, синтетические гигиенические средства, с химическими присадками для котлов, препятствующими образованию накипи.

Разнообразны ионные формы, в которых фосфор проникает с поверхности водосбора. Это и ортофосфат-ионы, и полифосфаты. Немалую часть составляют пирофосфаты и метафосфат-ионы. При pH свыше 6.5 доминирующей неорганической формой (порядка девяноста процентов ионов) является HPO 4 2- . В водоемах с кислой средой основным является соединение H 2 PO 4 - .

Содержание фосфора в открытых природных источниках незначительна. В литре ее величина обычно ограничивается несколькими сотыми миллиграмма, однако загрязненные водные объекты могут показывать содержание в несколько миллиграммов. Для подземных источников характерна концентрация, не превышающая 100 мкг/дм 3 (исключением являются водоемы, расположенные в местах, где залегают преимущественно фосфорсодержащие породы).

Смена сезонов сказывается на уровне фосфорсодержащих соединений. Причем колебания бывают довольно значительными. На скачки насыщенности влияют естественные изменения в интенсивности биохимического окисления и фотосинтеза. Весенне-летний период характеризуется минимальными показателями содержания, зато в осенне-зимние месяцы наблюдается предельное содержание фосфора. В морях отмечается весеннее и осеннее понижение уровня фосфора, а зимой и летом фиксируются наивысшие показатели.

Соли фосфорной кислоты проявляют свою токсичность только при высоких концентрациях. Зачастую химическая активность фосфатов обусловлена присутствием в водоеме примесей фтора.

Госкомэкология РФ, при составлении методики оценивания экологической ситуации, в качестве норматива рекомендовала показатель в 50 мкг/дм 3 - именно такое содержание фосфатов считается приемлемым.

Взвеси и растворы неорганических фосфатов определяются без предварительных манипуляций - колориметрических проб.

Полифосфаты

Токсичность этих фосфорных производных незначительна. Полифосфаты являются продуктом образования соединений между полифосфатами и кальцием, а также иными ионами, играющими биологически важную роль.

Me n (PO 3) n , Me n+2 PnO 3n+1 , Me n H 2 PnO 3n+1

Эти вещества применяются в пищевом производстве, как катализаторы, и при котловой обработке воды, как ингибитор коррозии. С их помощью обезжириваются волокна и смягчается вода. Полифосфаты - это неотъемлемые компоненты мыла и составов для стирки.

Остаточный объем полифосфатов, допустимый в отношении хозяйственно-питьевых водных объектов - 3.5 мг/дм 3 (органолептический показатель лимита вредности).

Уважаемые господа, если у Вас имеется потребность коррекции концентраций фосфоросодержащих соединений для доведения качества воды до определённых нормативов, сделайте запрос специалистам компании Waterman . Мы разработаем для Вас оптимальную технологическую схему очистки воды.


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дата введения 01.01.74

Настоящий стандарт распространяется на питьевую воду и устанавливает колориметрический метод определения полифосфатов.

Метод основан на гидролизе полифосфатов в кислой среде, при котором они переходят в растворенные ортофосфаты, определяемые колориметрическим методом в виде фосфорномолибденового комплекса, окрашенного в синий цвет. В отдельной пробе определяют ортофосфаты, первоначально бывшие в воде, содержание которых вычитают из результата, полученного при определении полифосфатов. Чувствительность метода составляет - 0,01 мг/дм 3 .

1. МЕТОДЫ ОТБОРА ПРОБ

1.2. Объем пробы воды для определения содержания полифосфатов должен быть не менее 500 см 3 .

1.3. Пробы воды отбирают в хорошо выщелоченные склянки с притертыми пробками.

1.4. Если анализ в день отбора пробы не произведен, воду консервируют добавлением 2 - 4 см 3 хлороформа на 1 дм 3 воды.

* На территории Российской Федерации действует ГОСТ Р 51232-98 .

** На территории Российской Федерации действует ГОСТ Р 51593-2000 .

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ

Фотоэлектроколориметр, кюветы с толщиной рабочего слоя 2 - 3 см.

Термостат с регулятором температуры.

Плитка электрическая.

Фильтр бумажный (синяя лента).

Посуда мерная лабораторная стеклянная по ГОСТ 1770 , ГОСТ 29227 и ГОСТ 29169 вместимостью: колбы мерные 50, 100 и 1000 см 3 , пипетки мерные 1 - 2 см 3 с делениями 0,01 см 3 , 5 - 10 см 3 с делением 0,1 см 3 ; пипетки мерные 5, 10, 20, 50 и 100 см 3 без делений.

Стаканы стеклянные лабораторные по ГОСТ 25336 .

Аммоний молибденовокислый по ГОСТ 3765 .

Калий фосфорнокислый однозамещенный по ГОСТ 4198 .

Олово двухлористое по ТУ 6-09-5384.

Кислота сульфаминовая.

Вся посуда должна быть обработана горячей соляной кислотой и тщательно промыта дистиллированной водой.

Все реактивы должны быть квалификации ч. д. а.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1 . Приготовление основного стандартного раствора однозамещенного фосфорнокислого калия.

0,7165 г KH 2 PO 4 , х. ч., предварительно высушенного в термостате в течение 2 ч при 105 °C, растворяют в мерной колбе вместимостью 1000 см 3 дистиллированной водой и доводят объем раствора до метки, добавляют 2 см 3 хлороформа. 1 см 3 раствора содержит 0,5 мг

3.2 . Приготовление I рабочего стандартного раствора однозамещенного фосфорнокислого калия.

10 см 3 основного раствора доводят до 1 дм 3 дистиллированной водой, 1 см 3 раствора содержит 0,005 мг .

3.3 . Приготовление II рабочего стандартного раствора однозамещенного фосфорнокислого калия.

50 см 3 I рабочего раствора доводят до 250 см 3 дистиллированной водой. 1 см 3 раствора содержит 0,001 мг.

Необходимо применять свежеприготовленный раствор.

3.4 . Приготовление молибденовокислого аммония (реактив I, кислый раствор)

25 г (NH 4) 6 Мo 7 О 24 · 4Н 2 O растворяют в 600 см 3 дистиллированной воды. К этому раствору осторожно, охлаждая, добавляют 337 см 3 концентрированной 98 %-ной серной кислоты. После охлаждения раствор доводят дистиллированной водой до 1 дм 3 . Раствор хранят в бутыли из темного стекла с притертой пробкой. Пользоваться реактивом можно через 48 ч после приготовления.

3.5 . Приготовление молибденовокислого аммония (реактив II, слабокислый раствор)

10 г (NH 4) 6 Мо 7 О 24 · 4Н 2 О растворяют в 400 см 3 дистиллированной воды и добавляют 7 см 3 концентрированной 98 %-ной серной кислоты. Раствор хранят в полиэтиленовой бутыли в темном месте. Устойчив около 3 месяцев. Пользоваться реактивом можно через 48 ч после приготовления.

3.6 . Приготовление 37 %-ного раствора серной кислоты

337 см 3 концентрированной 98 %-ной серной кислоты осторожно смешивают, приливая небольшими порциями к 600 см 3 дистиллированной воды. После охлаждения раствор доводят дистиллированной водой до 1 дм 3 .

3.7 . Приготовление основного раствора двухлористого олова

1,95 г кристаллического невыветренного SnCl 2 · 2Н 2 O растворяют в 50 см 3 13,6 %-ной соляной кислоты (18,4 см 3 37 %-ной НСl, не содержащей мышьяка, доводят до 50 см 3 дистиллированной водой). Суспензию тщательно перемешивают, хранят в склянке, покрытой внутри слоем парафина. Перед употреблением суспензию хорошо перемешивают. Суспензия может быть применена непосредственно после приготовления.

3.8 . Приготовление рабочего раствора двухлористого олова

2,5 см 3 основного раствора (суспензия) доводят дистиллированной водой до 10 см 3 .

Необходимо применять свежеприготовленный раствор. Раствор устойчив около 4 ч.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Определению мешают железо при концентрации, превышающей 1 мг/дм 3 , растворимые силикаты более 25 мг/дм 3 , нитриты. Влияние железа и силикатов устраняется соответствующим разбавлением исследуемой воды. Влияние нитритов при концентрации до 25 мг/дм 3 устраняется добавлением к пробе 0,1 г сульфаминовой кислоты NH 2 SO 2 OH, которая вносится до добавления к пробе молибденовокислого аммония.

4.2 . Определение ортофосфатов

К 50 см 3 исследуемой воды (без разбавления можно определить не более 0,4 мг/дм 3), профильтрованной через плотный бумажный фильтр «синяя лента», вносят те же реактивы и в той же последовательности, что и в образцовые растворы. Оптическая плотность раствора определяется электрофотоколориметром. Концентрация ортофосфатов устанавливается по калибровочному графику.

4.3 . Определение полифосфатов

К 100 см 3 исследуемой воды, профильтрованной через плотный бумажный фильтр, или к меньшему объему, доведенному до 100 см 3 дистиллированной водой, добавляют 2 см 3 37 %-ного раствора серной кислоты и кипятят 30 мин. Объем исследуемой воды поддерживают добавлением дистиллированной воды в пределах 50 - 90 см 3 . После охлаждения раствора переносят его в мерную колбу вместимостью 100 см 3 и доводят объем дистиллированной водой до метки. Добавляют 1 см 3 слабокислого раствора молибденовокислого раствора (реактив II), перемешивают и через 5 мин приливают 0,1 см 3 рабочего раствора двухлористого олова, затем снова перемешивают. Через 10 - 15 мин измеряют интенсивность окраски электрофотоколориметром.

4.4 . Построение калибровочного графика

В мерные колбы вместимостью 50 см 3 вносят пипеткой 0,0; 0,5; 1,0; 2,0; 5,0; 10,0; 20,0 см 3 рабочего стандартного раствора фосфорнокислого калия (1 см 3 - 0,001 мг) и доводят объем раствора до метки дистиллированной водой. Содержание полифосфатов в образцовых растворах будет соответственно равно: 0,0; 0,01; 0,02; 0,04; 0,10; 0,20; 0,40 мг в 1 дм 3 воды. В каждую колбу добавляют точно 1 см 3 молибденовокислого аммония (реактив I, кислый раствор), перемешивают и через 5 мин микропипеткой вносят 0,1 см 3 рабочего раствора двухлористого олова и перемешивают. Интенсивность окраски измеряют через 10 - 15 мин фотоэлектроколориметром, пользуясь красным светофильтром (l = 690 - 720 нм) и кюветами с толщиной слоя 2 - 3 см. Из полученных величин оптических плотностей вычитают оптическую плотность контрольной пробы и результаты наносят на график.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

где C - содержание ортофосфатов, найденное по калибровочному графику, мг/см 3 ;

50 - приведение объема исследуемой воды к 50 см 3 ;

V - объем исследуемой воды, взятый для определения, см 3 .

где С 1 - содержание полифосфатов, найденное по калибровочному графику, мг/дм 3 ;

100 - приведение объема исследуемой воды к 100 см 3 ;

V - объем исследуемой воды, взятый для определения, см 3 .

Допустимое расхождение между повторными определениями полифосфатов - 0,01 мг/дм 3 , если содержание их не превышает 0,07 мг/дм 3 , при более высоком их содержании - 15 % отн.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.72 № 2356

2. ВВЕДЕН ВПЕРВЫЕ

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

gastroguru © 2017