Презентация на тему импульсный диод. Диоды


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
РАЗДЕЛ 1. Полупроводниковые приборы Тема: Полупроводниковые диодыАвтор: Баженова Лариса Михайловна, преподаватель ГБПОУ Иркутской области «Ангарский политехнический техникум», 2014 г. Содержание1. Устройство, классификация и основные параметры полупроводниковых диодов1.1. Классификация и условные обозначения полупроводниковых диодов1.2. Конструкция полупроводниковых диодов1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодов2. Выпрямительные диоды2.1. Общая характеристика выпрямительных диодов2.2. Включение выпрямительных диодов в схемах выпрямителей 1.1. Классификация диодовПолупроводниковым диодом называется полупроводниковый прибор с одним p-n переходом и двумя внешними выводами. 1.1. Маркировка диодовМатериал полупроводникаТип диодаГруппа по параметрамМодификация в группеКС156АГД507БАД487ВГ (1) – германий; К (2) – кремний; А (3) – арсенид галлия.Д – выпрямительные, ВЧ иимпульсные диоды;А – диоды СВЧ;C – стабилитроны;В – варикапы;И – туннельные диоды;Ф – фотодиоды;Л – светодиоды;Ц – выпрямительные столбы и блоки.по группам:Первая цифра для «Д»:1 – Iпр < 0,3 A2 – Iпр = 0,3 A…10A3 – Iпр > 0,3 A 1.1. Условное графическое изображение диодов (УГО)а) Выпрямительные, высокочастотные, СВЧ, импульсные; б) стабилитроны; в) варикапы; г) туннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки 1.2. Конструкция полупроводниковых диодовНа базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскостиВывод от p-области называется анодом, а вывод от n-области – катодом 1) Плоскостной диодКристалл полупроводникаМеталлическая пластинкаОсновой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой 1.2. Конструкция полупроводниковых диодов 2) Точечный диодК базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя p-область Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).Микросплавные диоды получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимости. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные. 1.3. Вольтамперная характеристика и основные параметры полупроводниковых диодовВольтамперная характеристика реального диода проходит ниже, чем у идеального p-n перехода: сказывается влияние сопротивления базы. 1.3. Основные параметры диодов Максимально допустимый прямой ток Iпр.max. Прямое падение напряжения на диоде при макс. прямом токе Uпр.max. Максимально допустимое обратное напряжение Uобр.max = ⅔ ∙ Uэл.проб. Обратный ток при макс. допустимом обратном напряжении Iобр.max. Прямое и обратное статическое сопротивление диода при заданных прямом и обратном напряжениях Rст.пр.=Uпр./ Iпр.; Rст.обр.=Uобр./ Iобр. Прямое и обратное динамическое сопротивление диода. Rд.пр.=∆ Uпр./ ∆ Iпр 2. Выпрямительные диоды2.1. Общая характеристика. Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания. Выпрямительные диоды всегда плоскостные, они могут быть германиевые диоды или кремниевые. Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов. Добавочные сопротивления Rд (1-50 Ом) для выравнивания токов в ветвях).Если напряжение в цепи превосходит максимально допустимое Uобр. диода, то в этом случае допускается последова-тельное включение диодов. 2.2. Включение выпрямительных диодов в схемах выпрямителей 1) Однополупериодный выпрямительЕсли взять один диод, то ток в нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется однополупериодным. Его недостаток – малый КПД. 2) Двухполупериодный выпрямитель Мостовая схема 3) Двухполупериодный выпрямитель с выводом средней точки вторичной обмотки трансформатора Если понижающий трансформатор имеет среднюю точку (вывод отсередины вторичной обмотки), то двухполупериодный выпрямитель может быть выполнен на двух диодах, включенных параллельно. Недостатками этого выпрямителя являются: Необходимость применения трансформатора со средней точкой; Повышенные требования к диодам по обратному напряжению.. Задание: Определить, сколько одиночных диодов в схеме и сколько диодных мостов. Задания1. Расшифруйте названия полупроводниковых приборов:1 вариант: 2С733А, КВ102А, АЛ306Д2 вариант: КС405А, 3Л102А, ГД107Б З вариант: КУ202Г, КД202К, КС211Б 4 вариант: 2Д504А, КВ107Г, 1А304Б5 вариант: АЛ102А; 2В117А; КВ123А2. Показать путь тока на схеме:1,3,5 вар.: На верхнем зажиме«плюс» источника.2,4 вар.: На верхнем зажиме «минус» источника.


Приложенные файлы


Полупроводниковый диод – это нелинейный электронный прибор с двумя выводами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольт-амперной характеристики свойства полупроводниковых диодов бывают различными.




Выпрямительный диод на основе p-n перехода Основу выпрямительного диода составляет обычный электронно дырочный переход, вольт-амперная характеристика такого диода имеет ярко выраженную нелинейность. В прямом смещении ток диода инжекционный, большой по величине и представляет собой диффузионную компоненту тока основных носителей. При обратном смещении ток диода маленький по величине и представляет собой дрейфовую компоненту тока неосновных носителей. В состоянии равновесия суммарный ток, обусловленный диффузионными и дрейфовыми токами электронов и дырок, равен нулю. Рис. Параметры полупроводникового диода: а) вольт-амперная характеристика; б) конструкция корпуса ВАХ описывается уравнением


Выпрямление в диоде Одним из главных свойств полупроводникового диода на основе p-n перехода является резкая асимметрия вольт-амперной характеристики: высокая проводимость при прямом смещении и низкая при обратном. Это свойство диода используется в выпрямительных диодах. На рисунке приведена схема, иллюстрирующая выпрямление переменного тока в диоде. - Коэффициент выпрямления идеального диода на основе p-n перехода.


Характеристическое сопротивление Различают два вида характеристического сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD. Дифференциальное сопротивление определяется как Сопротивление по постоянному току На прямом участке вольт-амперной характеристики сопротивление по постоянному току больше, чем дифференциальное сопротивление RD > rD, а на обратном участке – меньше RD rD, а на обратном участке – меньше RD


Стабилитроны Стабилитрон - это полупроводниковый диод, вольт амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт амперной характеристики. ВАХ стабилитрона имеет вид, представленный на рисунке При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф 2 50 Ом.


Основное назначение стабилитрона – стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом. Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, – лавинный и туннельный пробой p n перехода. Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб 8 В.


Варикапы Варикап полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др. При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n- области, в результате чего происходит расширение обеднённой области p-n перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.




В полупроводнике n+ типа все состояния в зоне проводимости вплоть до уровня Ферми заняты электронами, а в полупроводнике p+ типа – дырками. Зонная диаграмма p+ n+ перехода, образованного двумя вырожденными полупроводниками: Рассчитаем, чему равна геометрическая ширина вырожденного p n перехода. Будем считать, что при этом сохраняется несимметричность p n перехода (p+ – более сильнолегированная область). Тогда ширина p+ n+ перехода мала: Дебройлевскую длину волны электрона оценим из простых соотношений:


Таким образом, геометрическая ширина p+ n+ перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+ n+ переходе можно ожидать проявления квантово- механических эффектов, одним из которых является туннелирование через потенциальный барьер. При узком барьере вероятность туннельного просачивания через барьер отлична от нуля. Обращенный диод – это туннельный диод без участка с отрицательным дифференциальным сопротивлением. Высокая нелинейность вольт- амперной характеристики при малых напряжениях вблизи нуля (порядка микровольт) позволяет использовать этот диод для детектирования слабых сигналов в СВЧ диапазоне. Вольт амперная характеристика германиевого обращенного диода а) полная ВАХ; б) обратный участок ВАХ при разных температурах

Содержание.1.
2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
ВАХ.
Коэффициент выпрямления.
Мостовые схемы включения диодов.
Диоды Шотки.

Определение.

Выпрямительный диод - это
полупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.

Область применения.

Выпрямительные диоды применяются в
цепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.

Принцип работы выпрямительного диода

Принцип работы этого устройства основывается на
особенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств и их обозначение.

По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение -
Si) и германиевые (обозначение - Ge). У первых рабочая температура выше.
Преимущество вторых - малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
- Первый элемент – обозначение материала из которого он выполнен;
- Второй определяет подкласс;
- Третий обозначает рабочие возможности;
- Четвертый является порядковым номером разработки;
- Пятый – обозначение разбраковки по параметрам.

Параметры выпрямительных диодов.

Частотный диапазон выпрямительных диодов
невелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А < Iпр.ср. < 10 А) и мощные
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.

Параметры выпрямительных диодов.

В состав параметров диодов входят
диапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ)
выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.

Коэффициент выпрямления

Коэффициент выпрямления можно рассчитать.
Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.

Мостовые схемы включения диодов.

Дио́дный мо́ст - электрическая схема,
предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем:
1. Однофазную
2. Трехфазную.

Однофазная мостовая схема.

На вход схемы подается переменное напряжение (для простоты будем
рассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны

результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе.
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление

Трехфазная мостовая схема.

В схеме трехфазного выпрямительного моста в результате
получается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе.

Диоды Шотки

Диоды Шоттки получают, используя переход металл-полупроводник.
При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника.
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного

‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт

Глава 2 Полупроводниковые диодыПолупроводниковый
диод
представляет
собой
полупроводниковый прибор с одним p-n переходом и двумя
выводами. Большинство диодов изготовлены на основе
несимметричных p-n-переходов. При этом одна из областей
диода, обычно (р+) высоколегированна и называется эмиттер,
другая
(n)
слаболегированная

база.
Р-n-переход
размещается в базе т.к она слаболегирована.
Структура, условное обозначение и название выводов
показаны на рис. 3.1. Между каждой внешней областью
полупроводника и ее выводом имеется омический контакт,
который на рис. 3.1 показан жирной чертой.
В зависимости от технологии изготовления различают:
точечные диоды, сплавные и микросплавные, с диффузионной
базой, эпитаксиальные и др.
По
функциональному
назначению
диоды
делятся:
выпрямительные, универсальные, импульсные, стабилитроны и
стабисторы, варикапы, тунельные и обращенные, а также СВЧдиоды и др.

Классификация диодов по функциональному назначению и их УГО

2.1. Вольт-амперная характеристика диода

ВАХ реального диода имеет ряд отличий от ВАХ p-n-перехода (рис.3.2).
При прямом смещении необходимо учитывать объёмное сопротивление
областей базы rб и эмиттера rэ диода (рис.3.3.), обычно rб>>rэ. Падение
напряжения на обьемном сопротивлении от тока диода, становятся
существенным при токах, превышающих единицы миллиампер. Кроме того,
часть напряжения падает на сопротивлении выводов. В результате
напряжение непосредственно на р-n-переходе будет меньше напряжения,
приложенного к внешним выводам диода. Это приводит к смещению прямой
ветви ВАХ вправо (кривая 2) и почти линейной зависимости от приложенного
напряжения.
ВАХ диода с учетом обьемного сопротивления записывается выражением
φU
I I 0 e T 1
Uφ Irб
I I 0 e T 1
где Uпр - напряжение, приложенное к выводам; r - суммарное сопротивление базы и
электродов диода, обычно r=rб.
При обратном смещении диода ток диода не остается постоянным равным I0
т.е. наблюдается рост обратного тока.
Это объясняется тем, что обратный ток диода состоит из трех составляющих:
Iобр =I0 + Iтг + Iут
U φ Irб
T
I I0 e
1
где I0 – тепловой ток перехода;
Iтг – ток термогенерации. Он возрастает с увеличением обратного напряжения.
Это связано с тем, что p-n перехода расширяется, увеличивается его объем и
следовательно увеличивается количество неосновных носителей, образующихся
в нем за счёт термогенерации. Он на 4-5 порядка больше тока I0.
Iут – ток утечки. Он связан конечной величиной проводимости поверхности
кристалла, из которого изготовлен диод. В современных диодах он всегда
меньше термотока.

Полупроводниковые диоды

Полупроводниковый диод – это электропреобразовательный полупроводниковый
прибор с одним электрическим переходом и двумя выводами, в котором используются
различные свойства р-n- перехода (одностороняя проводимость, электрический пробой,
туннельный эффект, эл. емкость).
Выпрямительный диод
Германиевый диод Кремниевый диод
Стабилитрон
Варикап
Тунельный диод
Обращенный диод

2.2. Эквивалентная схема диода

Это схема, состоит из электрических элементов, которые учитывают
физические процессы, происходящие в p-n переходе, и влияние
элементов конструкции на электрические свойства.
Эквивалентная схема замещения p-n переходеа при малых
сигналах, когда можно не учитывать нелинейных свойств диода
приведена на рис. .
Здесь Сд - общая емкость диода, зависящая от режима; Rп = Rдиф
- дифференциальное сопротивление перехода, значение которого
определяют с помощью статической ВАХ диода в заданной рабочей
точки (Rдиф = U/ I|U=const); rб - распределенное электрическое
сопротивление базы диода, его электродов и выводов, Rут –
сопротивление утечки.
Иногда схему замещения дополняют емкостью между выводами
диода СВ, емкостями Свх и Свых (показаны пунктиром) и
индуктивностью выводов LВ.
Эквивалентная схема при больших сигналах аналогична
предыдущей. Однако в ней учитываются нелинейные свойства р-nперехода путем замены дифференциального сопротивления на
источник зависимый источник тока I = I0(eU/ T – 1).

2.3. Влияние температуры на ВАХ диода

I0(Т)=I(То)2(Т-То)/Т*,
Температура окружающей среды оказывает существенное влияние на
вольтамперную характеристику диода. С изменением температуры несколько
меняется ход как прямой, так и обратной ветви ВАХ.
При увеличении температуры возрастает концентрация неосновных
носителей в кристалле полупроводника. Это приводит к росту обратного тока
перехода (за счет увеличения тока двух его составляющих: Iо и Iтг), а также
уменьшению объемного сопротивления области базы. При увеличении
температуры обратный ток насыщения увеличивается примерно в 2 раза у
германиевых и в 2,5 раза у кремниевых диодов на каждые 10 °С. Зависимость
обратного тока от температуры аппроксимируется выражением
I0(Т)=I(То)2(Т-То)/Т*,
где: I(Т0)-ток измерен при температуре Т0; Т – текущая температура; Т*
- температура удвоения обратного тока - (5-6)0С – для Ge и (9-10)0С – для Si.
Максимально допустимое увеличение обратного тока диода определяет
максимально допустимую температуру диода, которая составляет 80- 100 °С
для германиевых диодов и 150 - 200 °С для кремниевых..
Ток утечки слабо зависят от температуры, но может существенно
изменяться во времени. Поэтому он, в основном, определяет временную
нестабильность обратной ветви ВАХ.
Прямая ветвь ВАХ при увеличении температуры сдвигается влево и
становится более крутой (рис. 3.3). Это объясняется ростом Iобр (3.2) и
уменьшением rб, Последнее, уменьшает падение напряжения на базе, а
напряжение непосредственно на переходе растет при неизменном напряжении
на внешних выводах.
Для оценки температурной нестабильности прямой ветви вводится
температурный коэффициент напряжения (ТКН) т= U/ T, показывающий,
как изменится прямое напряжение на диоде с изменением температуры на
10С при фиксированном прямом токе. В диапазоне температур от -60 до
+60"С т -2,3 мВ/°С.

2.4. Выпрямительные диоды

Выпрямительные диоды – предназначены для выпрямления низкочастотного
переменного тока и обычно используются в источниках питания. Под выпрямлением
понимают преобразование двухполярного тока в однополярный. Для выпрямления
используется основное свойство диоды – их одностороняя проводимость.
В качестве выпрямительных диодов в источниках питания для выпрямления больших
токов используют плоскостные диоды. Они имеют большую площадь контакта р и п областей
и большую барьерную емкость (емкостное сопротивление Xc=1/(ωC), что не позволяет
выпрямлять на высоких частотах. Кроме того такие диоды имеет большую величину
обратного тока.
Основными параметрами, характеризующими выпрямительные диоды,
являются (рисунок 2.1):
- максимальный прямой ток Iпр max;
- падение напряжения на диоде при заданном значении прямого тока Iпр (Uпр
0.3...0,7 В для германиевых диодов и Uпр 0,8...1,2 В -для кремниевых);
- максимально допустимое постоянное обратное напряжение диода Uобр max ;
- обратный ток Iобр при заданном обратном напряжении Uобр (значение
обратного тока германиевых диодов на два -три порядка больше, чем у
кремниевых);
- барьерная емкость диода при подаче на него обратного напряжения
некоторой величины;
- Fмах - диапазон частот, в котором возможна работа диода без существенного
снижения выпрямленного тока;
- рабочий диапазон температур (германиевые диоды работают в диапазоне 60...+70°С, кремниевые - в диапазоне -60...+150°С, что объясняется малыми
обратными токами кремниевых диодов).
Средняя рассеиваемая мощность диода Рср Д – средняя за период мощность
рассеиваемая диодом при протекании тока в прямом и обратном направлении.
Превышение максимально допустимых величин ведет к резкому сокращению срока
службы или пробою диода.
Улучшая условия охлаждения (вентиляцией, применением радиаторов), можно
увеличить отводимую мощность и избежать теплового пробоя. Применение радиаторов
позволяет также увеличить прямой ток.

Однофазный однополупериодный выпрямитель
Однофазный двухполупериодный
выпрямитель со средней точкой
Промышленностью
выпускаются
кремниевые
выпрямительные диоды на токи до сотен ампер и обратные
напряжения до тысяч вольт. Если необходимо работать при
обратных напряжениях, превышающих допустимые Uобр для
одного диода, то диоды соединяют последовательно. Для
увеличения
выпрямленного
тока
можно
применяться
параллельное включение диодов.
1) Однополупериодный выпрямитель. Трансформатор
служит для понижения амплитуды переменного напряжения.
Диод служит для выпрямления переменного тока.
2) Двухполупериодный выпрямитель. Предыдущая схема
имеет существенный недостаток. Он состоит в том, что не
используется часть энергии первичного источника питания
(отрицательный полупериод). Недостаток устраняется в
схеме двухполупериодного выпрямителя.
В первый положительный (+) полупериод, ток
протекает так: +, VD3, RH↓, VD2, - .
Во второй – отрицательный (-) так: +, VD4, RH↓ , VD1,- .
В обоих случаях он
через нагрузку протекает в одном
направлении ↓- сверху вниз, т.е. происходит выпрямление
тока.
Однофазный мостовой выпрямитель

2.5. Импульсные диоды

Импульсные диоды – это диоды, которые предназначены для работы в ключевом режиме в импульсных схемах.Диоды в
таких схемах выполняют роль электрических ключей. Электрический ключ имеет два состояния:
1. Замкнутое, когда его сопротивление равно нулю Rvd =0.
2. Разомкнутое, когда его сопротивление бесконечно Rvd=∞.
Этим требованиям удовлетворяют диоды в зависимости от полярности приложенного напряжения. Они имеют малое
сопротивление при смещениях в прямом направлении,и большое сопротивление при смещениях в обратном направлении.
1. Важным параметром переключающих диодов является их быстродействие переключения. Факторами,
ограничивающими скорость переключения диода, является:
а) ёмкость диода.
б) скорость диффузии и связанные с ней время накопления и рассасывания неосновных носителей заряда.
В импульсных диодах высокая скорость переключения достигается уменьшением площади p-n-перехода, что снижает
величину ёмкости диода. Однако, это уменьшает величину максимального прямого тока диода (Iпрям.max.). Импульсные
диоды характеризуются теми же параметрами, что и выпрямительные, но имеют так же и специфические, связанные с
быстродействием переключения. К ним относятся:Время установления прямого напряжения на диоде (tуст): tуст. –
время, за которое напряжение на диоде при включении прямого тока достигает своего стационарного значения с
заданной точностью. Это время связанно со скоростью диффузии состоит в уменьшением сопротивления области базы за
счёт накопления в ней неосновных носителей заряда инжектируемых эмиттером. Первоначально оно высоко, т.к. мала
концентрация носителей заряда. После подачи прямого напряжения концентрация неосновных носителей заряда в базе
увеличивается, это снижает прямое сопротивление диода. Время восстановления обратного сопротивления диода
(tвосст.): определяется как время, в течение которого обратный ток диода после переключения
полярности приложенного напряжения с прямого на обратное достигает своего стационарного значения с заданной
точностью. Это время связано с рассасыванием из базы неосновных носителей заряда накопленных при протекании
прямого тока. tвосст. – время, за которое обратный ток через диод при его переключении достигает своего
стационарного значения, с заданной точностью I0, обычно 10% от максимального обратного тока. tвосст.= t1.+ t2. , где
t1. – время рассасывания, за которое концентрация неосновных носителей заряда на границе р-п-перехода обращается в
ноль, t2. – время разряда диффузионной емкости, связанное рассасыванием неосновных зарядов в объме базы диода. В
целом время восстановление это время выключения диода, как ключа.

2.7. Стабилитроны и стабисторы

Стабилитрон – это полупроводниковый диод, изготовленный из слабо
легированного кремния, который применяется для стабилизации постоянного
напряжения. ВАХ стабилитрона при обратном смещении имеет участок малой
зависимости напряжения от тока протекающего через него. Этот участок возникает за
счёт электрического пробоя (рис. 1.5).
Стабилитрон характеризуется следующими параметрами:
Номинальное напряжение стабилизации Uст. ном - номинальное напряжение
на стабилитроне в рабочем режиме (при заданном токе стабилизации);
номинальный ток стабилизации Iст.ном – ток через стабилитрон при
номинальном напряжении стабилизации;
минимальный ток стабилизации Iст min - наименьшее значение тока
стабилизации, при котором режим пробоя устойчив;
максимально допустимый ток стабилизации Iст max - наибольший ток
стабилизации, при котором нагрев стабилитронов не выходит за допустимые пределы.
Дифференциальное сопротивление
Rст- отношение приращения напряжения
стабилизации к вызывающему его приращению тока стабилизации: Rст=
ТКН – температурный коэффициент напряжения стабилизации:
ТКН
Uст / Iст.
U ст.ном.
100%
U ст.ном. T
– относительное изменение напряжения на стабилитроне приведённое к одному
градусу.
Uст.ном. < 5В – при туннельном пробое.
Uст.ном. > 5В – при лавинном пробое.
К параметрам стабилитронов также относят максимально допустимый прямой ток
Imax, максимально допустимый импульсный ток Iпр.и max, максимально допустимую
рассеиваемую мощность Р max.

Параметрический стабилизатор напряжения (рис.9.). Он служит для обеспечения
постоянства напряжения на нагрузке (Uн) при изменении постоянного напряжения
питания (Uпит) или сопротивления нагрузки (Rн).
Нагрузка (потребитель) включена параллельно стабилитрону. Ограничительное
сопротивление (Rогр) служит для установления и поддержания правильного режима
стабилизации. Обычно Rогр рассчитывают для средней точки ВАХ стабилитрона (рис.5).
Схема обеспечивает стабилизацию напряжения за счёт перераспределения токов IVD и

Проведем анализ работы схемы.
По второму закону запишем соотношение:Uпит = (IVD + IН) Rогр+ Uн
Изменение напряжения питания на Uпит, приводит к появлению приращения
напряжению на нагрузке на Uн и токов IVD = Uн/rст, IН= Uн/ Rн. Запишем
исходное уравнение относительно приращений:
Uпит = (Uн/rст + Uн/ Rн) Rогр+ Uн = Uн(1/rст + 1/Rн) Rогр+ Uн.
Разрешим его относительно Uн, получим Uн = Uн/
Поскольку Rогр/rст велико, то Uн мало. Чем больше Rогр и меньше rст тем меньше
изменения выходного напряжения.
Расчёт схемы (обычно задано Uпит. и RН):
Выбор стабилитрона VD1 из условий:
и Iст.ном.> Iн.
2)Расчет
Rогр.
U вх. U ст.ном.
I ст.ном.
U ст.ном. U вых.
Разновидности стабилитронов:
1. Прецизионные. Они имею малое значение ТКН и нормированную величину
Uст.ном. Малое ТКН достигается путем включения последовательно со стабилитроном
(VD2), имеющим положительный ТКН диоды (VD1) в прямом направлении, ТКН которого
отрицателен. Поскольку общий ТКН равен их сумме, то он оказывается малым по
величине.
2. Двуханодный стабилитрон. Он состоит из двух стабилитронов включенных
встречно-последовательно и применяется для стабилизации амплитуды переменных
напряжений.
Стабисторы – это полупроводниковые диоды в которых для
стабилизации напряжения используется прямая ветвь ВАХ. В таких
диодах база сильно легирована примесями (rб→0), а потому их прямая
ветвь практически идет вертикально. Параметры стабистора аналогичны
параметрам стабилитрона. Они применяются для стабилизации малых
напряжений (Uст.ном. ≈0.6В).), ток стабисторов – от 1мА до нескольких
десятков мА и отрицательный ТКН.

2.9. Туннельные и обращенные диоды

На границе сильно легированных (вырожденных) p-n структур с концентрацией примеси
имеет место туннельный эффект. n 10 20 эл/см 3
Он проявляется в том, что при прямом смещении на прямой ветви ВАХ появляется
спадающий участок АВ с отрицательным сопротивления Rдиф = U/ I|АВ=r- 0.
Пунктиром на графике показана ВАХ диода.
Это позволяет использовать такой диод в усилителях и генераторах электрических
колебаний в диапазоне СВЧ, а также в импульсных устройствах.
При обратном смещении ток из-за тунельного пробоя резко возрастает при малых
напряжениях.
Основные параметры туннельного диода следующие:
пиковый ток и напряжение пика Iп, Uп- ток и напряжение в точке А;
ток и напряжение впадины IВ - ток и напряжение в точке В;
отношение токов Iп/Iв;
напряжение пика - прямое напряжение, соответствующее току пика;
напряжение раствора Up - прямое напряжение, большее напряжения впадины, при
котором ток равен пиковому; индуктивность LД - полная последовательная индуктивность
диода при заданных условиях; удельная емкость Сд/Iп - отношение емкости туннельного
диода к пиковому току; дифференциальное сопротивление гдиф - величина, обратная
крутизне ВАХ; резонансная частота туннельного диода fо - расчетная частота, при
которой общее реактивное сопротивление р-n-перехода и индуктивности корпуса
туннельного диода обращается в нуль; предельная резистивная частота fR - расчетная
частота, при которой активная составляющая полного сопротивления последовательной
цепи, состоящей из р-n-перехода и сопротивления потерь, обращается в нуль; шумовая
постоянная туннельного диода Кш - величина, определяющая коэффициент шума диода;
сопротивление потерь туннельного диода Rn - суммарное сопротивление кристалла,
контактных присоединений и выводов.
К максимально допустимым параметрам относят максимально допустимый постоянный
прямой ток туннельного диода Iпр max, максимально допустимый прямой импульсный ток
Iпр.и max максимально допустимый постоянный обратный ток Iобр mах,
максимально допустимую мощность СВЧ Рсвч mах, рассеиваемую диодом.

Схема генератора гармонических колебаний на
ТД приведена на рис. . Назначение элементов: R1,
R2 – резисторы, задают рабочую точку туннельного
диода на середине участка ВАХ с отрицательным
сопротивлением; Lk, Ck – колебательный контур; Сбл
ёмкость
блокировочная,
по
переменной
составляющей она подключает туннельный диод
параллельно к колебательному контуру.
Туннельный диод, включённый параллельно
колебательному
контуру
компенсирует
своим
отрицательным
сопротивлением
сопротивление
потерь колебательного контура, а потому колебания
в нем могут продолжаться бесконечно долго.
Обращенные диоды являются разновидностью
туннельных диодов. В них концентрация примесей
несколько меньше чем в туннельных. За счет этого у
них
отсутствует
участок
с
отрицательным
сопротивлением. На прямой ветви до напряжений
0,3-0,4В
имеется
практически
горизонтальный
участок с малым прямым током (рис. .), в то время
как
ток
обратной
ветви
начиная
с
малых
напряжений, за счет туннельного пробоя, резко
возрастает. В этих диодах, для малых переменных
сигналов,
прямую
ветвь
можно
считать
не
проводящей ток, а обратную – проводящей. Отсюда и
название этих диодов.
Обращенные
диоды
используются
для
выпрямления СВЧ сигналов малых амплитуд (100300)мВ.

2.10. Маркировка полупроводниковых диодов

Маркировка состоит из шести элементов, например:
КД217А
или К С 1 9 1 Е
123456
123456
1 - Буква или цифра, указывает вид материала, из которого изготовлен диод:
1 или Г – Ge (германий); 2 или К – Si (кремний); 3 или А – GeAs.
2 - буква, указывает тип диода по его функциональному назначению:
Д – диод; С – стабилитрон, стабистор; В – варикап; И – туннельный диод; А –
СВЧ диоды.
3. Назначение и электрические свойства.
4 и - 5 указывают порядковый номер разработки или электрические свойства
(в стабилитронах – это напряжение стабилизации; в диодах – порядковый
номер).
6. - Буква, указывает деление диодов по параметрическим группам (в
выпрямительных диодах – деление по параметру Uобр.max, в стабилитронах
деление по ТКН).

Дисциплина: Электротехника и электроника

Лектор: Погодин Дмитрий Вадимович
Кандидат технических наук,
доцент кафедры РИИТ
(кафедра Радиоэлектроники и
информационно-измерительной
техники)
Электротехника и электроника

Слайд 2

Диод- электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь.

Слайд 3

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону - основное свойство диода. Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы - пассивными).

Слайд 4

Односторонняя проводимость диода является его основным свойством. Это свойство и определяет назначение диода: – преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование); – выпрямление переменного тока в постоянный Свойства диода


Слайд 5

Классификация диодов По исходному полупроводниковому материалу диоды делят на четыре группы: германиевые, кремниевые, из арсенида галлия и фосфида индия. Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые. Это связано с их большей проводимостью при небольшом напряжении (около 0,1…0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5…30 кОм). Полупроводниковые диоды


Слайд 6

По конструктивно-технологическому признаку различают диоды точечные и плоскостные. По назначению полупроводниковые диоды делят на следующие основные группы: выпрямительные, универсальные, импульсные, варикапы, стабилитроны (опорные диоды), стабисторы, туннельные диоды, обращенные диоды, лавинно-пролетные (ЛПД), тиристоры, фотодиоды, светодиоды и оптроны.

Слайд 7

Диоды характеризуются такими основными электрическими параметрами: – током, проходящим через диод в прямом направлении (прямой ток Іпр); – током, проходящим через диод в обратном направлении (обратный ток Іобр); – наибольшим допустимым выпрямленным ТОКОМ выпр. макс; – наибольшим допустимым прямым током І пр.доп.; – прямым напряжением U n p ; – обратным напряжением и об Р; – наибольшим допустимым обратным напряжением и обр.макс – емкостью Сд между выводами диода; – габаритами и диапазоном рабочих температур

Слайд 8

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску. Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора - диод пропускает ток только в одну сторону Работа диода


Слайд 9

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный - с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, - прямым током I пр, а поданное на него напряжение, из-за которого диод оказался в открытым, - прямым напряжением U пр. Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током I обр, а напряжение, создающее его,- обратным напряжением U обр.

10

Слайд 10

Маркировка диодов На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение. Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой - анод (плюс). Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак « + ». На плоских выводах некоторых диодов (например, серии Д2) прямо вьіштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 2.1). Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 2.1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой « Д » с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение « Д7 ».



11

Слайд 11

Система обозначений Система обозначений состоит из четырех элементов. Первый элемент (буква или цифра) указывает исходный полупроводниковый материал, из которого изготовлен диод: Г или 1 - германий* К или 2 - кремний, А или 3 - арсенид галлия, И или 4 - фосфид индия. Второй элемент - буква, показывающая класс или группу диода. Третий элемент - число, определяющее назначение или электрические свойства диода. Четвертый элемент указывает порядковый номер технологической разработки диода и обозначается от А до Я. Например, диод КД202А расшифровывается: К - материал, кремний, Д - диод выпрямительный, 202 - назначение и номер разработки, А - разновидность; 2С920 - кремниевый стабилитрон большой мощности разновидности типа А; АИЗ01Б - фосфид-индиевый туннельный диод переключающей разновидности типа Б. Иногда встречаются диоды, обозначенные по устаревшим системам: ДГ-Ц21, Д7А, Д226Б, Д18. Диоды Д7 отличаются от диодов ДГ-Ц цельнометаллической конструкцией корпуса, вследствие чего они надежнее работают во влажной атмосфере. Германиевые диоды типа ДГ-Ц21…ДГ-Ц27 и близкие к ним по характеристикам диоды Д7А…Д7Ж обычно используют в выпрямителях для питания радиоаппаратуры от сети переменного тока. В условное обозначение диода не всегда входят некоторые технические данные, поэтому их необходимо искать в справочниках по полупроводниковым приборам. Одним из исключений является обозначение для некоторых диодов с буквами КС или цифрой вместо К (например, 2С) - кремниевые стабилитроны и стабисторы. После этих обозначений стоит три цифры, если это первые цифры: 1 или 4, то взяв последние две цифры и разделив их на 10 получим напряжение стабилизации Uст. Например, КС107А - стабистор, Uст = 0,7 В, 2С133А - стабилитрон, Uст = 3,3 В. Если первая цифра 2 или 5, то последние две цифры показывают Uст, например, КС 213Б - Uст = 13 В, 2С 291А - 0Uст = 91 В, если цифра 6, то к последним двум цифрам нужно прибавить 100 В, например, КС 680А – Uст = 180 В.

12

Слайд 12

Структурная схема полупроводникового диода с р - n-переходом: 1 - кристалл; 2 - выводы (токоподводы); 3 - электроды (омические контакты); 4 - плоскость р - n-перехода. Типичная вольтамперная характеристика полупроводникового диода с р - n-переходом: U - напряжение на диоде; I - ток через диод; U* oбр и I* oбр - максимальное допустимое обратное напряжение и соответствующий обратный ток; U cт - напряжение стабилизации.

13

Слайд 13

Малосигнальная (для низких уровней сигнала) эквивалентная схема полупроводникового диода с р - n-переходом: r p-n - нелинейное сопротивление р - n-перехода; r б - сопротивление объёма полупроводника (базы диода); r yт - сопротивление поверхностных утечек; С Б - барьерная ёмкость р - n-перехода; С диф - диффузионная ёмкость, обусловленная накоплением подвижных зарядов в базе при прямом напряжении; С к - ёмкость корпуса; L к - индуктивность токоподводов; А и Б - выводы. Сплошной линией показано подключение элементов, относящихся к собственно р - n-переходу. Вольтамперные характеристики туннельного (1) и обращенного (2) диодов: U - напряжение на диоде; I - ток через диод


14

Слайд 14

Полупроводниковые диоды (внешний вид): 1 - выпрямительный диод; 2 - фотодиод; 3 - СВЧ диод; 4 и 5 - диодные матрицы; 6 - импульсный диод. Корпуса диодов: 1 и 2 - металло-стеклянные; 3 и 4 - металло-керамические; 5 - пластмассовый; 6 - стеклянный

15

Слайд 15

Диод Шоттки Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами. Стабилитрон / диод Зенера / Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений. Варикап Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

16

Слайд 16

Тиристор Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое. Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках

17

Слайд 17

Светодиод диоды Генри Раунда Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

18

Последний слайд презентации: Диод

Инфракрасный диод Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды. Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка. Фотодиод Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

gastroguru © 2017