Четырехугольная призма схема. Как сделать креативные фотографии с помощью хрустальной призмы для спецэффектов

Дано:
Пересечение пирамиды и призмы
Необходимо:
Построить развертку прямой призмы и показать на ней линию пересечения призмы с пирамидой .

Построение развертки прямой призмы намного легче, чем развертка пирамиды.

Построение развертки призмы

Построение развертки прямой призмы облегчается тем, что все размеры для развертки берутся с эпюр и нам не надо находить натуральные величины ребер призмы. Так как дана прямая призма, то боковые ребра призмы проецируются на фронтальную плоскость проекций в натуральную величину. Ребра оснований прямой призмы параллельны горизонтальной плоскости проекций и проецируются на нее также в натуральную величину.

Алгоритм построения развертки призмы

  • Проводим горизонтальную прямую.
  • От произвольной точки G этой прямой откладываем отрезки GU, UE, ЕК, КG равные длинам сторон основания призмы.
  • Из точек G, U, ... восстанавливают перпендикуляры и на них откладывают величины равные высоте призмы. Полученные точки соединяют прямой. Прямоугольник GG1G1G является разверткой боковой поверхности призмы. Для указания на развертке граней призмы из точек U, E, K восставляют перпендикуляры.
  • Для получения полной развертки поверхности призмы к развертке поверхности пристраивают многоугольники ее оснований.

Для построения на развертке линии пересечения призмы с пирамидой замкнутых ломанных линий 1, 2, 3 и 4, 5, 6, 7, 8 пользуемся вертикальными прямыми.

Более подробно в видеоуроке по начертательной геометрии в Автокад

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Необходимо построить развертки гранных тел и нанесения на развертку линии пересечения призмы и пирамиды.

Для решения этой задачи по начертательной геометрии необходимо знать:

— сведения о развертках поверхностей, способах их построения и, в частности, построение разверток гранных тел;

— взаимно-однозначные свойства между поверхностью и ее разверткой и способы перенесения точек, принадлежащих поверхности, на развертку;

— методы определения натуральных величин геометрических образов (линии, плоскости и др.).

Порядок решения Задачи

Разверткой называется плоская фигура, которая получается при разрезании и разгибании поверхности до полного совмещения с плоскостью. Все развертки поверхностей (заготовки, выкройки ) строятся только из натуральных величин.

1. Поскольку развертки строятся из натуральных величин, приступаем к их определению, для чего па кальку (миллиметровку или другую бумагу) формата A3, переносится задача № з со всеми точками и линиями пересечений многогранников.

2. Для определения натуральных величин ребер и основания пирамиды используем метод прямоугольного треугольника . Безусловно, можно и другие, но на мой взгляд, этот метод более доходчив для студентов. Суть его заключается в том, что «на построенном прямом угле откладывается на одном катете проекционная величина отрезка прямой, а на другом — разность координат концов данного отрезка, взятая с сопряженной плоскости проекций. Тогда гипотенуза полученного прямого угла дает натуральную величину данного отрезка прямой» .

Рис.4.1

Рис.4.2

Рис.4.3

3. Итак, на свободном месте чертежа (рис.4.1.а) строим прямой угол.

По горизонтальной линии этого угла откладываем проекционную величину ребра пирамиды DA взятую с горизонтальной плоскости проекций — l DA . По вертикальной линии прямого угла откладываем разность координат точек D и A , взятых с фронтальной плоскости проекций (по оси z вниз) — . Соединив полученные точки гипотенузой, получим натуральную величину ребра пирамиды | DA | .

Таким образом определяем натуральные величины других ребер пирамиды DB и DC , а также основания пирамиды АВ, ВС, АС (рис.4.2) , для которых строим второй прямой угол. Заметим, что определение натуральной величины ребра DC производится в тех случаях, когда на исходном чертеже он дан проекционно. Это легко определяется, если вспомним правило: «если прямая па какой-либо плоскости проекций параллельна оси координат, то на сопряженной плоскости она проецируется в натуральную величину».

В частности, в примере нашей задачи фронтальная проекция ребра D C параллельна оси х , следовательно, в горизонтальной плоскости DC сразу выражена в натуральной величине | DC | (рис.4.1).

Рис.4.4

4. Определив натуральные величины ребер и основания пирамиды, приступаем к построению развертки (рис.4.4 ). Для этого на листе формата бумаги ближе к левой стороне рамки берем произвольную точку D считая, что это вершина пирамиды. Проводим из точки D произвольную прямую и откладываем на ней натуральную величину ребра | DA | , получая точку А . Тогда из точки А , взяв на раствор циркуля натуральную величину основания пирамиды R =|АВ| и поместив ножку циркуля в точку А делаем дуговую засечку. Далее берем на раствор циркуля натуральную величину ребра пирамиды R =| DB | и, поместив ножку циркуля в точку D делаем вторую дуговую засечку. В пересечении дуг получаем точку В , соединив ее с точками А и D получаем грань пирамиды D АВ . Аналогичным образом пристраиваем к ребру DB грань DBC , а к ребру DC — грань DC А .

К одной из сторон основания, например В C , пристраиваем основание пирамиды также методом геометрических засечек, беря на раствор циркуля величины сторон А B и A С и делая дуговые засечки из точек B и C получая точку A (рис.4.4).

5. Построение развертки призмы упрощается тем, что на исходном чертеже в горизонтальной плоскости проекций основанием, а во фронтальной – высотой 85мм, она задана сразу в натуральную величину

Для построения развертки мысленно разрежем призму по какому-либо ребру, например по E , закрепив его на плоскости, развернем другие грани призмы до полного совмещения с плоскостью. Вполне очевидно, что получим прямоугольник, у которого длиной является сумма длин сторон основания, а высотой — высота призмы – 85мм .

Итак, для построения развертки призмы поступаем:

— на том же формате, где построена развертка пирамиды, с правой стороны проводим горизонтальную прямую линию и от произвольно взятой точки на ней, например E, последовательно откладываем отрезки основания призмы EK , KG , GU , UE , взятые с горизонтальной плоскости проекций;

— из точек E , K , G , U , E восстанавливаем перпендикуляры, на которых откладываем высоту призмы, взятую с фронтальной плоскости проекций (85мм);

— соединяя полученные точки прямой, получаем развертку боковой поверхности призмы и к одной из сторон основания, например, GU пристраиваем верхнее и нижнее основание методом геометрических засечек, как выполняли при построении основания пирамиды.

Рис.4.5

6. Для построения линии пересечения на развертке используем правило, гласящее о том, что «любой точке на поверхности соответствует точка на развертке». Возьмем, например, грань призмы GU , где проходит линия пересечения с точками 1-2-3 ; . Отложим на развертке основания GU точки 1,2,3 по расстояниям, взятым с горизонтальной плоскости проекции. Восстановим из этих точек перпендикуляры и отложим на них высоты точек 1’ , 2’, 3’ , взятые с фронтальной плоскости проекции – z 1 , z 2 и z 3 . Таким образом, на развертке получили точки 1, 2, 3, соединив которые получаем первую ветвь линии пересечения.

Аналогично переносятся, все остальные точки. Построенные точки соединяются, получая вторую ветвь линии пересечения. Выделяем красным цветом – искомая линия. Добавим, что при неполном пересечении гранных тел, на развертке призмы будет одна замкнутая ветвь линии пересечения.

7. Построение (перенесение) линии пересечения на развертке пирамиды производится таким же образом, но с учетом следующего:

— поскольку развертки строятся из натуральных величин, необходимо перенести положение точек 1-8 линии пересечения проекций на линии ребер натуральных величин пирамиды. Для этого возьмем, например, точки 2 и 5 во фронтальной проекции ребра DA перенесем их на проекционную величину этого ребра прямого угла (рис.4.1) по линиям связи параллельным оси х , получим искомые отрезки | D 2| и | D 5| ребра DA в натуральных величинах, которые и откладываем (переносим) на развертку пирамиды;

— аналогично переносятся все другие точки линии пересечения, в том числе и точки 6 и 8 , лежащие на образующих Dm и Dn для чего на прямом угле (рис.4.3) определяются натуральные величины этих образующих, а затем на них переносятся точки 6 и 8 ;

— на втором прямом угле, где определены натуральные величины основания пирамиды, переносятся точки m и n пересечений образующих с основанием, которые впоследствии переносятся на развертку.

Таким образом, полученные на натуральных величинах точки 1-8 и перенесенные на развертку, соединяем последовательно прямыми линиями и окончательно получаем линию пересечения пирамиды на ее развертке.

Раздел: Начертательная геометрия /

В основе геометрического тела – призмы лежат многоугольники, а каждая боковая грань – параллелограмм. Непосвященный, возможно, немного испугался. Но если вашего ребенка просят прийти на урок с призмой, вы, естественно, захотите помочь ему и объяснить, как сделать призму из бумаги.

Начнем с изготовления прямой призмы. В этой призме боковые ребра перпендикулярны основаниям. Наиболее проста в изготовлении своими руками призма из бумаги с тремя гранями, так как в ее основаниях лежат простейшие из многоугольников – треугольники. Изготовим «правильную» призму. У нее основания представлены равносторонними треугольниками.

Треугольная призма

Продумаем, какая по высоте будет наша треугольная призма из бумаги. Начертим прямоугольник-с одной стороной, равной высоте, а другой - равной длине периметру треугольника в основании. Полученный прямоугольник разделим параллельными прямыми на три равные части. От углов прямоугольника, находящегося в середине, циркулем проведем окружности с радиусом, равным стороне нашего треугольника в основании. Где окружности пересекутся за пределами первоначального прямоугольника, поставим точки и соединим их с центрами окружностей. Мы должны получить фигуру, изображенную в середине рисунка. Далее фигуру вырезаем с небольшими припусками для склеивания, сгибаем по имеющимся прямым линиям и получаем готовую призму.

По какому шаблону изготавливается призма из бумаги с четырьмя гранями, наглядно демонстрирует схема на рисунке.

Шестиугольная призма

Пример заготовки для пятигранной призмы представлен на рисунке. Здесь высота пирамиды 10 см, длина сторон у пятигранника в основании по 3 см. Похожим образом может быть изготовлена шестиугольная призма из бумаги, но в ее основании лежит шестиугольник.

Наклонная призма

Наклонная призма из бумаги представлена на этом рисунке. Ее боковые грани находятся под углом к основанию. Такую призму можно изготовить по шаблону-развертке.

gastroguru © 2017