Машины и аппараты химических производств. Машины и аппараты химических производств и предприятий строительных материалов Барсуков Б., Калекин В

Методические указания рассмотрены и одобрены на заседании предметной (цикловой) комиссии дисциплин горного цикла и специальных дисциплин по обогащению полезных ископаемых

Протокол № _____ от «_____» __________________ 20____г.

Председатель _________________ В. П. Новикова


Введение…………………………………………………………………………...
1 Общие требования к выполнению дипломного проекта……………………...
1.1 Общие правила по выполнению дипломного проекта…………………...
1.2 Оформление графической части дипломного проекта…………………..
1.3 Общие требования к оформлению и построению пояснительной записки…………………………………………………………...
1.4 Требования к оформлению перечня содержания текстового документа……………………………………………………………..
1.5 Порядок составления списка использованных источников……………...
2 Тематика дипломных проектов………………………………………………...
3 Примерное содержание пояснительной записки……………………………...
3.1 Реконструкция действующих отделений………………………………….
3.2 Капитальный ремонт машины (аппарата)………………………………...
3.3 Механизация трудоемких процессов……………………………………...
3.4 Общие методические указания для расчета экономической части дипломного проекта……………………………………………………………….
4 Преддипломная производственная практика………………………………….
5 Защита дипломного проекта……………………………………………………
Список использованных источников…………………………………………….
Приложение А Задание для дипломного проекта……………………………….

Введение

Дипломный проект является большой самостоятельной работой будущего техника-механика химических производств, направленной на решение конкретных задач в области совершенствования работы технологического оборудования, организации ремонтного производства и улучшения технико-экономических показателей работы участка или цеха.

Основной целью пособия является ознакомление учащихся с тематикой дипломного проектирования и характером требований, предъявляемых к дипломному проекту, что поможет учащемуся внести планомерность в работу над проектом и позволит стимулировать творческий подход к разработке темы дипломного проекта с максимальным проявлением инициативы в рамках четко определенных общих требований к содержанию и объему всех разделов дипломного проекта, а также к оформлению пояснительной записки и графической части проекта в соответствии со стандартами ЕСКД.

Работа над проектом должна базироваться на конкретном материале предприятия, на котором проводится преддипломная практика или на котором работает учащийся, а сама тема проекта должна быть актуальной, соответствовать современным требованиям науки и техники, учитывать реальные задачи отрасли в повышении эффективности производства. Дипломный проект является выпускной работой учащегося, на основании которой Государственная квалификационная комиссия решает вопрос о присвоении ему квалификации техник-механик.


1 Общие требования к выполнению и оформлению дипломного проекта

Общие правила по выполнению дипломного проекта

Дипломный проект состоит из двух частей: пояснительной записки и графической части. Основной частью дипломного проекта является графическая часть. Расчетно-пояснительная записка расширяет и объясняет графическую часть дипломного проекта, поэтому обе части дипломного проекта составляют единое целое.

Графическая часть дипломного проекта представляется в виде технологических чертежей, схем электроснабжения комплекса, диаграмм, таблиц экономических показателей и т.д.

Необходимое количество и состав графических материалов в каждом конкретном случае определяются руководителем проекта совместно с учащимся. Дипломный проект должен содержать не менее 4-х чертежей.

Общими требованиями к пояснительной записке дипломного проекта являются: четкость и логическая последовательность изложения материала, конкретность результатов расчетов, доказательств и выводов, краткость и ясность формулировок, исключающих неоднозначность толкования.

Расчетно-пояснительная записка дипломного проекта должна в краткой и четкой форме раскрывать творческий замысел, содержать принятые методики расчета, эффективность применения электрооборудования и рациональность его использования. При необходимости расчеты должны сопровождаться иллюстрациями: графиками, эскизами, диаграммами, схемами и т. п. Объем пояснительной записки должен примерно составлять не более 80 страниц.

Оформление графической части дипломного проекта

Любой вид конструкторской документации оформляется рамкой и соответствии с ГОСТ 2.106-96 и основной надписью в соответствии с ГОСТ 2.104-2006 , располагаемой в правом нижнем углу. На форматах А4 (294*210) основные надписи располагаются только вдоль короткой стороны листа.

Рамки и основные надписи выполняют сплошными основными и сплошными тонкими линиями по ГОСТ 2.303.

Основная надпись для пояснительной записки выполняется по ГОСТ 2.104-2006 (форма 2) для заглавного листа в соответствии с рисунком 1, для последующих – (форма 2а) в соответствии с рисунком 2.

Рисунок 1

Рисунок 2

Для чертежей и схем основная надпись выполняется по ГОСТ 2.104-2006 для первого листа (форма 1) в соответствии с рисунком 3, для последующих - (форма 2а) в соответствии с рисунком 2.

Рисунок 3

В графах основной надписи (номера граф на формах показаны в скобках) указывают:

Графа 1 - наименование изделий (в именительном падеже единственного числа без переноса части слов на другую строку). Заполняют графу, строчными буквами по ГОСТ 2.304-81 (номер шрифта по выбору, в зависимости от количества слов в наименовании). Например, "Корпус" . В наименованиях, состоящих из нескольких слов, должен быть прямой порядок слов, например "Колесо зубчатое" .

Графа 2 - обозначение документа по ГОСТ 2.201-80.

Обозначение принимается по стандарту предприятия, т.е. данного учебного заведения.

Для специальности 2-36 07 01 «Машины и аппараты химических производств и предприятий строительных материалов» упрощенное буквенно-цифровое обозначение состоит из пяти групп:

XX XX XX XX XX XX
1 гр. 2 гр. 3 гр. 4 гр. 5 гр. 6 гр.
00 00 00

Первая группа – индивидуальный шифр учащегося по учебному журналу.

Вторая группа – код специальности (шесть цифр).

Третья группа – обозначение узла изделия (документа).

Четвертая группа – обозначение подузла изделия.

Пятая группа

Шестая группа – шифр документа.

Например:

В пояснительной записке:

01

36 07 01 – код специальности МА;

00. 00. 000 – обозначение узла (документа);

ПЗ - пояснительная записка (шифр документа)

На графической части :

- для сборочного чертежа:

01 – индивидуальный шифр учащегося по журналу;

36 07 01 – код специальности МА;

00 – обозначение узла изделия (документа);

00

000 – номер детали сборочного чертежа;

СБ– сборный чертеж;

ВО –чертеж общего вида;

Согласно ГОСТ 21.101-93 СПДС (система проектирования документации для строительства).

ТХ – технология производства.

- для чертежей деталей сборочного чертежа:

01.36 07 01. 00. 00. 001

01 – индивидуальный шифр учащегося по журналу;

36 07 01 – код специальности МА;

00 –обозначение узла изделия (документа);

00 – обозначение подузла изделия;

001 – номер детали сборочного чертежа.

Графа 3 – обозначение материала детали (графу заполняют только на рабочих чертежах) шрифт № 5 , например: Сталь 45ГОСТ 1050-88.

Графа 4 – литера, присвоенная данному документу.

Согласно разработанного СТП1-08 вводиться обозначения документов.

УДП – учебный дипломный проект;

УДР – учебная дипломная работа;

УКП – учебный курсовой проект;

УПО – учебный отчет практики;

УКР – учебная курсовая работа;

ДКР – домашняя контрольная работа.

Графа 5 – масса изделия.

Графа 6 – масштаб (проставляется в соответствии с ГОСТ 2.302-68 и ГОСТ2.109-73 шрифт № 5).

Графа 7 – порядковый номер листа.

Графа 8 – общее количество листов документа (графу заполняют только на первом листе).

Графа 9 - различительный индекс учебного заведения и группы,

Шрифт № 5

Например: СГГХК МА-1-05

Графа 10 - характер работы, выполняемой лицом, подписывающим документ. Для учебных работ следует писать:

Разработал (Разраб.)

Проверил (Пров.)

Нормоконтроль (Н. контр.)

Графа 11 - фамилии лиц, подписывающих документ.

Графа 12 - подписи лиц, фамилии которых указаны в графе 11.

Графа 13 - дата подписания документа.

Графы 14-18 - не заполняют.

1.3 Общие требования к оформлению и построению пояснительной записки

Текстовые документы выполняют на формах, установленных соответствующими стандартами Единой системы конструкторской документации (ЕСКД) и Системы проектной документации для строительства (СПДС).

Текст выполняют одним из следующих способов:

· рукописным - черным цветом на одной стороне листа.

· машинописным – четким шрифтом черного цвета с высотой строчной буквы не менее 2,5 мм , высота прописной буквы – 3,5 мм , согласно ГОСТ 2.304-68 ;

· с применением печатающих и графических устройств вывода ЭВМ (ГОСТ 2.004 ) – шрифт Times New Roman Cyr черного цвета шрифт 14 . Межстрочный интервал должен составлять Word 97-03 – точный 18 пунктов , Word 07- 1,15 .

Шрифт печати должен быть прямым, светлого начертания, четким, черного цвета, одинаковым по всему объему документа.

Разрешается использовать компьютерные возможности акцентирования внимания на определениях, терминах, важных особенностях, применяя разное начертание шрифта: курсивное, полужирное, курсивное полужирное, выделение с помощью рамок, разрядки, подчеркивания и другое.

Вписывать в текстовые документы, изготовленные машинописным способом, отдельные слова, формулы, условные знаки (рукописным способом), а также выполнять иллюстрации следует черными чернилами, пастой или тушью. Каждый лист текстового документа должен иметь рамку. Рамка выполняется черным цветом типографским методом или вручную черной пастой. Рамка выполняется сплошной основной линией на расстоянии 20 мм от левой границы формата, 5 мм от остальных границ формата.

Расстояние от рамки формата до границ текста в начале и в конце строк – не менее 3 мм.

Расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм .

Абзацы в тексте начинают отступом (15-17 мм).

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения документа, допускается исправлять подчисткой или закрашиванием белой краской и нанесением на том же месте исправленного текста (графики) машинописным способом или черными чернилами, пастой или тушью рукописным способом.

Изложение текста документа

Текст документа при необходимости разделяют на разделы и подразделы.

Листы документа нумеруют, начиная с листа с основной надписью по ГОСТ 2.104-2006. Нумерация страниц документа и приложений, входящих в состав этого документа, должна быть сквозная.

Разделы должны иметь порядковые номера в пределах всего документа, обозначенные арабскими цифрами без точки и записанные с абзацного отступа.

Подразделы должны иметь нумерацию в пределах каждого раздела. Номер подраздела состоит из номеров раздела и подраздела, разделенных точкой. В конце номера подраздела точки не ставятся. Разделы, как и подразделы, могут состоять из одного или нескольких пунктов.

Каждый пункт, подпункт и перечисление записывают с абзаца.

Разделы, подразделы должны иметь заголовки. Пункты, как правило, заголовков не имеют. Заголовки следует печатать с прописной буквы без точки в конце, не подчеркивая(для разделов шрифт №7 по ГОСТ 2.304; шрифт 28 по ГОСТ 2.004, жирный),(для подразделов шрифт №5 по ГОСТ 2.304; шрифт 24 по ГОСТ 2.004, жирный). Переносы слов в заголовках не допускаются. Если заголовок состоит из двух предложений, их разделяют точкой.

Расстояние между заголовком и текстом при выполнении документа машинописным способом должно быть равно 3,4 интервалам, при выполнении рукописным способом – 15 мм. Расстояние между заголовками раздела и подраздела - 2 интервала, при выполнении рукописным способом – 8 мм.

Сокращение слов в тексте и надписях под иллюстрациями, кроме общепринятых сокращений, установленных ГОСТ 2. 316, не допускаются.

В формулах в качестве символов следует применять обозначения, установленные соответствующими стандартами.

Если в документе имеется более одной формулы, то их нумеруют арабскими цифрами в пределах разделов или сквозной нумерацией, номер ставят с правой стороны листа на уровне формулы в круглых скобках.

Значение символов и числовых коэффициентов, входящих в формулу, должны быть приведены непосредственно под формулой. Значение каждого символа с новой строки дается в той последовательности, в какой они приведены в формуле.

Первая строка расшифровки должна начинаться со слов «где», без двоеточия после него, например:

(1)

где Q Э – эксплутационная производительность, т/ч;

Q Т – техническая производительность, т/ч;

k И – коэффициент использования машины по времени;

t СМ – длительность смены, ч.

Расстояние между текстом и формулой должно быть равно 2 интервала, при выполнении рукописным способом – 10 мм.

Оформление иллюстраций и приложений

Количество иллюстраций должно быть достаточным для пояснения излагаемого текста. Иллюстрации могут быть расположены как по тексту документа, так и в конце его. Иллюстрации должны быть выполнены в соответствии с требованиями стандартов ЕСКД и СПДС. Иллюстрации, за исключением иллюстраций приложений, следует нумеровать сквозной нумерацией.

Иллюстрации каждого приложения обозначают отдельной нумерацией арабскими цифрами с добавлением перед цифрой обозначения приложения. Например – Рисунок А.3.

Допускается нумеровать иллюстрации в пределах раздела. В этом случае номер иллюстрации состоит из номера раздела и порядкового номера иллюстрации, разделенной точкой. Например – Рисунок 1.1.

Иллюстрации, при необходимости, могут иметь наименование и пояснительные данные (подрисуночный текст).

Материал, дополняющий текст документа, допускается помещать в приложениях.

Приложения могут обязательными и информационными.

В тексте документа на все приложения должны быть даны ссылки. Приложения располагаются в порядке ссылок на них в тексте документа.

Каждое приложение следует начинать с новой страницы с указанием наверху посередине страницы слова «ПРИЛОЖЕНИЕ» (шрифт №7 по ГОСТ 2.304 и шрифт 28 по ГОСТ 2.004, жирный) и его обозначение, а под ним в скобках для обязательного приложения пишут слово «обязательное », а для информационного – «рекомендуемое » или «справочное ».(шрифт №3,5 по ГОСТ 2.304;шрифт 16 по ГОСТ 2.004,обычный).

Приложение должно иметь заголовок , который записывают симметрично относительно текста с прописной буквы отдельной строкой. (шрифт №5 по ГОСТ 2.304; шрифт 18 по ГОСТ 2.004,обычный)

Приложения обозначают заглавными буквами русского алфавита, начиная с А, за исключением букв Ё, З, Й, О, Ч, Ь, Ы Ъ. После слова «ПРИЛОЖЕНИЕ» следует буква, обозначающая его последовательность.

Все приложения должны быть перечислены в содержании документа с указанием их номеров и заголовков.

Построение таблиц

Таблицы применяют для лучшей наглядности и удобства сравнения показателей. Название таблицы должно быть точным, кратким, его следует помещать над таблицей.

При переносе таблицы на ту же или другие страницы название помещают только над первой частью таблицы.

Цифровой материал, как правило, оформляют в виде таблиц в соответствии с рисунком 6.

Таблицы, за исключением, таблиц приложений, следует нумеровать арабскими цифрами сквозной нумерацией.

Таблицы каждого приложения обозначают отдельной нумерацией арабскими цифрами с добавлением перед цифрой обозначения приложения. Например, Таблица А.1.

Допускается нумеровать таблицы в пределах раздела.

Боковик Графы (колонки)

Рисунок 4

На все таблицы документа должны быть приведены ссылки в тексте документа, при ссылке следует писать слово «таблица» с указанием ее номера.

Заголовки граф и строк следует писать с прописной буквы, а подзаголовки граф – со строчной буквы, если они составляют одно предложение с заголовком, или с прописной буквы, если они имеют самостоятельное значение. В конце заголовков и подзаголовков таблиц точки не ставят.

Разделять заголовки и подзаголовки боковика и граф диагональными линиями не допускается.

Высота строк таблицы должна быть не менее 8 мм.

Допускается помещать таблицу вдоль длинной стороны листа документа.

Если строки или графы таблицы выходят за формат страницы, ее делят на части, помещая одну часть под другой или рядом, при этом в каждой части таблицы повторяют ее головку и боковик. При делении таблицы на части допускается ее головку или боковик заменять соответственно номером граф и строк. При этом нумеруют арабскими цифрами графы и (или) строки первой части таблицы.

Слово «Таблица» указывают один раз слева над первой частью таблицы, над другими частями пишут слова «Продолжение таблицы» с указанием номера (обозначения) таблицы в соответствии с рисунком 7.

Если в конце страницы таблица прерывается и ее продолжение будет на следующей странице, в первой части таблицы нижнюю горизонтальную линию, ограничивающую таблицу, не проводят.

Графу «Номер по порядку» в таблицу включать не допускается.

1.4 Требования к оформлению перечня содержания текстового документа

В документе большого объема (более 10 листов) помещают содержание, включающее номера и наименование разделов и подразделов с указанием номеров листов.

Специальность высшего образования I ступен и

Подготовка специалиста по данной специальности предполагает формирование определенных профессиональных компетенций, включающих знания и умения по организации и руководству всем комплексом работ по техническому обслуживанию и ремонту технологического оборудования химических производств и предприятий стройматериалов; разработке и оформлению нормативных документов по организации и проведению ремонта и монтажа оборудования; планированию, управлению и организационному обеспечению деятельности; обучению персонала для работы на химических предприятиях, производствах стройматериалов и др.

Инженер-механик ».

Объектами профессиональной деятельности специалиста являются:

Машины, аппараты, технологические установки химических и фармацевтических производств и предприятий строительных материалов;

Конструкторская, технологическая и управленческая документация;

Специализированный инструмент и средства механизации ремонтных и монтажных работ;

Специальные программные средства.

  • Инженер;
  • Инженер-исследователь;
  • Инженер-контролер;
  • Инженер-механик;
  • Инженер по внедрению новой техники и технологии;
  • Инженер по комплектации оборудования;
  • Инженер по механизации и автоматизации производственных процессов;
  • Инженер по наладке и испытаниям;
  • Инженер по инструменту;
  • Инженер по техническому надзору;
  • Инженер-конструктор;
  • Конструктор.

Специальность среднего специального образования

Специальность обеспечивает получение квалификации «Техник-механик ».

Сферой профессиональной деятельности специалиста являются:

  • химические предприятия;
  • нефтеперерабатывающее производство;
  • предприятия строительных материалов;
  • специализированные ремонтно-монтажные организации.

После окончания обучения выпускники вышеназванной специальности могут занимать следующие должности:

  • Техник;
  • Техник по наладке и испытаниям;
  • Техник по эксплуатации и ремонту оборудования.

Обучение проводится в учреждениях образования:

  • - - дн - >>>
  • УО "Белорусский государственный технологический университет" - Машины и аппараты химических производств и предприятий строительных материалов - заочная - >>>
  • УО "Белорусский государственный технологический университет" - Машины и аппараты химических производств и предприятий строительных материалов >>>
  • - Машины и аппараты химических производств и предприятий строительных материалов - дн - >>>
  • УО "Полоцкий государственный университет" - Машины и аппараты химических производств и предприятий строительных материалов - заочная сокращенный срок - >>>
  • Филиал БГТУ "Белорусский государственный колледж промышленности строительных материалов" - Машины и аппараты химических производств и предприятий строительных материалов. Техническое обслуживание и ремонт оборудования предприятий строительных материалов и изделий - дн - >>>
  • - Машины и аппараты химических производств и предприятий строительных материалов (техническое обслуживание и ремонт оборудования предприятий химического и нефтеперерабатывающего производства) - дн - >>>
  • УО "Новополоцкий государственный политехнический колледж" - Машины и аппараты химических производств и предприятий строительных материалов (техническое обслуживание и ремонт оборудования предприятий химического и нефтегазоперерабатывающего производства) - заочная - >>>
  • Технологический колледж УО "Гродненский государственный университет им. Я. Купалы" - Машины и аппараты химических производств и предприятий строительных материалов - дн - >>>
  • Филиал БНТУ "Солигорский государственный горно-химический колледж" - Машины и аппараты химических производств и предприятий строительных материалов - заочная - >>>
  • ГУО "Бобруйский государственный механико-технологический колледж" - Машины и аппараты химических производств и предприятий строительных материалов - дн - >>>

Машины и аппараты химических производств

Курс лекций

1. Классификация химических машин и аппаратов. 2

2. Аппараты для перемешивания жидких сред. 2

3. Конструкции аппаратов. 4

4. Механические перемешивающие устройства. 5

5. Методика расчета перемешивающих устройств. 13

6. Приводы мешалок. 19

7. Уплотнения. 29

8. Фильтры. Классификация неоднородных систем. 42

9. Фильтры для разделения суспензий. 42

10. Классификация фильтров. 44

11. Типовые конструкции. 44

12. Центрифуги. 56

13. Классификация центрифуг. 57

14. Способы выгрузки осадка из роторов центрифуг. 59

15. Конструкции центрифуг. 67

16. Методика расчета. 74

17. Основные положения расчета на прочность роторов центрифуг. 82

18. Критическая скорость валов. 86

19. Трубопроводные системы. Классификация технологических трубопроводных систем 90

20. Запорная арматура. 94

21. Краны.. 95

22. Вентили. 101

23. Задвижки. 106

24. Реакторы химической промышленности. 109

25. Классификация химических реакций. 110

26. Классификация реакторов. 110

27. Аппараты идеального вытеснения, идеального смешения и промежуточного типа 112

28. Реакторы для проведения гомогенных реакций в газовой фазе. 114

29. Реакторы для системы жидкость - жидкость. 117

30. Червячные машины. Назначение и классификация. 120

31. Схема червячной машины.. 120

32. Теоретические основы переработки материала не червячных машинах. 122

33. Валковые машины.. 127

34. Конструкция валковых машин. 128

35. Основные детали и узлы валковых машин. 131

Основные понятия и определения

Машиной - называется устройство для переработки материала, причем, материал может изменить форму, размеры, но не меняет химического состава.

Аппаратом - называется устройство для переработки материала, при этом материал меняет свои физико-механические свойства.

Классификация химических машин и аппаратов

Классификацией называется логическая операция, состоящая в разделении множества предметов по обнаруженным сходствам на отдельные группы. Классификация машин и аппаратов осуществляется для упорядочения номенклатур и специализации заводов химического машиностроения. В качестве примера можно привести укрупненную классификацию химического оборудования, включающую 20 групп. При этом было выделено 15 групп оборудования по химическому процессу:

1. Аппараты емкостного типа с перемешивающими устройствами

2. Аппараты емкостного типа с неподвижными устройствами

3. Фильтры

4. Центрифуги

5. Жидкостные сепараторы



6. Кристаллизаторы

7. Грануляторы

8. Теплообменные аппараты

9. Выпарные аппараты

10. Колонные аппараты

11. Сушильные аппараты

12. Аппараты с вращающимися барабанами для обжига, сушки и кристаллизации

13. Электролизеры

14. Краскотерочные машины

15 Промышленные печи

Три группы по специфическим качествам самой аппаратуры:

1. Аппараты высокого давления (Р.>64 кг/см 2)

2. Эмалированная аппаратура

3. Аппараты из неметаллических материалов

Конструкции аппаратов

Выбор аппаратов с перемешивающими устройствами и конструктивные особенности аппаратов определяются характеристикой процесса, свойствами перемешиваемой среды, производительностью технологической линии, температурными параметрами процесса и давлением, при котором процесс осуществляется. Такое многообразие факторов, влияющих на выбор конструкции, затрудняет задачу оптимального проектирования аппаратов.

Основные процессы химической технологии, для осуществления которых используются аппараты с мешалками, проводятся, как правило, в жидкой неоднородной среде. Под жидкой неоднородной средой понимается одно- или многокомпонентная среда с неравномерной концентрацией или температурой, а также жидкая неоднородная система, состоящая из дисперсной фазы, распределенной в жидкой среде.

В практике наибольшее распространение получил механический метод перемешивания жидких сред, осуществляемый путем механического воздействия рабочего органа (мешалки) на рабочую среду.

Этот метод перемешивания используется в аппарате, состоящем, как правило, из корпуса, перемешивающего устройства и его привода.

Наиболее важное значение в работе аппарата имеет тип и конструкция перемешиваемого устройства, работа которого заключается в превращении упорядоченной механической энергии вращающихся элементов в неупорядоченную тепловую энергию за счет сил сопротивления, создаваемых корпусом аппарата. В результате этого перемешивающее устройство осуществляет диссипацию энергии в объеме аппарата, величина которой зависит как от конструкции мешалки и характеристики привода, так и от конструкции аппарата и его внутренних устройств. Все эти характеристики аппарата в совокупности определяют мощность перемешивания N. Мерой мощности перемешивания может также служить объемная мощность, характеризующая диссипацию в аппарате:



Где V ж - объем перемешиваемой жидкости, равный при коэффициенте заполнения аппарате j =1,0 объему аппарата V (под коэффициентом j в данном случае понимается отношение V ж /V).

В аппарате любого объема в зависимости от частоты вращения n имеют место различные гидродинамические режимы движения жидкости, определяющие величину Е. Области работы аппаратов поэтому могут быть охарактеризованы мерой этой величины – критерием мощности K n ,который определяют по формуле:

, (1.2)

где r - плотность перемешиваемой среды, ; d – диаметр мешалки, м, n- число оборотов мешалки, c -1 .

Для аппаратов всех типов значение K n определяется, в первую очередь, центробежным критерием Рейнольдса Re ц, поскольку:

, (1.3)

При этом:

, (1.4)

Где m - динамический коэффициент вязкости.

Зависимость (1.3) характеризует наиболее общие закономерности движения жидкости в аппарате.

Приводы мешалок

Тихоходные мешалки – лопастные, якорные и т. п. – обычно приводятся во вращение от индивидуального электродвигателя через зубчатую передачу.

Приводы обычно устанавливают на крышках аппаратов, в которых мешалка работает, иногда на балках или рамах, укрепленных на крыше. Если вал длинный, то на днище сосуда монтируется дополнительная опора. В современных конструкциях привод обычно осуществляется непосредственно от электродвигателя, через редуктор.

Для комбинированных мешалок применяются приводы типа, изображенного на рисунке 14.

Рисунок 14 - Привод комбинированной мешалки.

От вала 1 вращение передается через две конические зубчатые передачи: через колеса 3 и 5 в одном направлении и через колеса 2 и 4 в обратном направлении. Если передаточные числа обеих пар одинаковы, то валы колес 4 и 5 будут вращаться с одинаковой скоростью, но в разные стороны.

Если комбинированная мешалка состоит из тихоходной и быстроходной мешалок, ставятся два независимых привода. Якорная мешалка приводится во вращение от электродвигателя через пару конических колес, а турбинная – от своего электродвигателя (валы соединены муфтам).

Если места на крышке сосуда или над ней недостаточно, привод располагают под сосудом, что, однако требует установки хорошего сальникового уплотнения.

Приводы пропеллерных мешалок чаще всего осуществляются в зависимости от скорости вращения: 1.от электродвигателя, непосредственно связанного с валом мешалки; 2.от электродвигателя через шестеренчатую передачу; 3.от электродвигателя со встроенным редуктором; 4.от электродвигателя через клиноременную передачу.

Пример привода первого типа для стационарных пропеллеров показан на рисунке 15.

Применяются также электродвигатели с регулируемым числом оборотов, что делает мешалку более универсальной, в тех случаях, когда в процессе перемешивания резко изменяется вязкость системы. Для вертикальных стационарных пропеллеров, при обычных на практике диаметрах и скоростях вращения валов, считают допустимой длину вала до 1,8 м. Если необходимо иметь большую длину, то принимают следующие меры: 1. Устанавливают стабилизаторы в виде наваренных на лопасти пропеллера крылышек (рисунок 16а) или в виде широкого кольца со спицами, укрепляемого на конце вала (рисунок 16б). 2. Устанавливают концевые подшипники, монтируемые на днище сосуда, как это показано на рисунок 17а и б. 3. Устанавливают дополнительный подшипник в приводе (рисунок 18а, или дополнительный вынесенный подшипник (рисунок 18в). Рисунок 15 - Привод пропеллерной мешалки.

Рисунок 18 - Дополнительные подшипники в приводах мешалок.

Для уменьшения длины вала прибегают к установке привода под сосудом. Более короткие валы имеют также боковые мешалки, привод которых устанавливается или на вертикальной стенке сосуда, или на днище в случае горизонтальных сосудов.

Стойки отливают из чугуна или сваривают из углеродистой стали. Они представляют собой цилиндры или усеченные конусы, снабженные верхним и нижним присоединительными фланцами. В обечайке стоек имеются вырезы для удобства монтажа и демонтажа.

в приводах концевые опоры служат для подвижного закрепления нижнего конца вала перемешивающего органа. Опоры состоят (рисунок 19) из стойки 1, к которой болтами 7 прикреплен подшипник 2, в нем закреплена штифтами 5 неподвижная втулка 4. На нижнем конце вала закреплена болтом 6 подвижная втулка 3, которая вращается вместе с валом внутри неподвижной втулки 4.

Втулки изготавливают из чугуна, графита, капрона, текстолита или фторопласта-4, остальные детали из углеродистой стали для нейтральных сред или из коррозионно-стойких материалов для агрессивных сред. С точки зрения распределения нагрузок наиболее рациональны приводы с концевыми подшипниками, однако, во многих случаях из-за коррозионного или абразивного действия среды их нельзя устанавливать. Концевые подшипники в аппарате работают в очень тяжелых условиях: их невозможно смазывать, они плохо 1- стойка; 2- подшипник; 3- подвижная втулка; 4- неподвижная втулка; 5- штифты; 6,7- болты Рисунок 19 - Опоры концевые внутренние для вертикальных валов перемешивающих устройств.

доступны для осмотра и ремонта. Конструкция подшипника должна обеспечивать свободную циркуляцию жидкости через него. На рисунке 20а показан типовой концевой подшипник (подпятник). Подпятник, показанный на рисунке 20б применяется для футерованных аппаратов. Коническое основание этого подпятника обеспечивает ему высокую жесткость и предохраняет футеровку вблизи подпятника от разрушения.

а) б)

а) типовая конструкция; б) подпятник для футерованных аппаратов

Рисунок 20 - Концевые подшипники.

При работе мешалки без концевого подшипника возможно появление крутильных колебаний консольного вала мешалки, являющихся следствием динамических нагрузок на вал от перемешиваемой среды, условий закрепления вала в опорах, конструкции мешалки. При неправильном учете в процессе конструирования таких важных критериев надежности, как жесткость и виброустойчивость, эксплуатация аппаратов с мешалками встречает ряд затруднений. Если вал с мешалкой не отбалансирован и в его подшипниковых опорах имеется люфт d , то возможно отклонение нижнего конца вала на величину s. Схема отклонения вала с двумя подшипниковыми опорами изображена на рисунок 22.

Из подобия треугольников (рисунок 22) получаем соотношение:

, (1.38)

Т.е. колебания вала зависит от величины люфта d и отношения L/l .

Если люфт устранить полностью, то величину отношения L/l можно ограничить. Для надежной работы консольного вала мешалки рекомендуется L/l 4. Для уменьшения крутильных колебаний вала после крепления мешалки он должен быть статически отбалансирован. При опасности возникновения крутильных колебаний, которые ведут к нарушению работы сальника, или при больших значениях L/l необходима установка концевого подшипника.

Крутильные колебания вызывают повышенный износ подшипников и сальника. Концевой подшипник устраняет крутильные колебания, улучшая работу сальника и подшипниковых опор. Хотя концевой подшипник работает в агрессивной среде, применение его для нормальной работы аппарата необходимо при большой длине или высокой частоте вращения вала.

Для обеспечения соосности обеих втулок (рисунок 19) может применяться концевой подшипник (рисунок 23), в котором обойма невращающейся втулки имеет шаровую поверхность, что дает возможность устанавливать ось этой втулки в нужном направлении.

1- вал; 2- вращающаяся втулка; 3- невращающаяся текстолитовая втулка; 4- обойма.

Рисунок 23 - Концевой подшипник с шаровой обоймой

Крепление мешалок . В простейших конструкциях лопасти приваривают непосредственно к валу. Однако, элементы крепятся на валу с помощью разъемных соединений. Обычно мешалка состоит из ступицы, к которой привариваются лопасти. Ступица крепится на валу с помощью шпонки и стопорных устройств, препятствующих осевому смещению. В случае установки мешалки в середине вала ее закрепляют стопорным винтом (рисунок 24а), при установке на конце вала – концевой гайкой (рисунок 24б) или с помощью двух полуколец, которые закладываются в кольцевую выточку на валу (рисунок 24.в).

а) стопорным винтом; б) концевой гайкой; в) полукольцами

Рисунок 24 - Способы крепления мешалок на валу.

При конструировании мешалок необходимо учитывать условия их монтажа. Мешалки небольших аппаратов (диаметром 1,2 м и менее) обычно собираются совместно с крышкой и вместе с ней устанавливаются в аппарат. Они должны иметь минимум разъемных соединений. Мешалки для крупногабаритных аппаратов целесообразно делать разъемными из частей таких размеров, которые можно пронести через лаз аппарата. Это дает возможность разбирать мешалку при ремонтных и монтажных работах, не снимая крышку и привод. В цельносварных аппаратах мешалка обязательна должна быть разборной.

Муфты служат для соединения вала привода с валом мешалки. Применяют в основном нормализованные муфты двух типов – продольно-разъемные и зубчатые.

Продольно-разъемные муфты применяют для жесткого соединения выходного вала редуктора (мотор-редуктор) с валом перемешивающего устройства с промежуточным валом при любом числе промежуточных опор. Муфта состоит (рисунок 25) из корпуса 1 (образующегося двумя половинами), накидных фланцев 2 и шпилек 5 с шайбами и гайками. Соединяемые концы валов имеют кольцевые проточки, на которые надето разрезное кольцо 3, половинки его скрепляются двумя пружинами 4. Сверху надеты на шпонке половины корпуса, после затяжки шпилек фланцев получается жесткое соосное соединение валов.

Зубчатые муфты применяют для соединения выходных валов мотор-редуктора и электродвигателя (гидромотора) с промежуточным валом при двух промежуточных опорах. Муфта состоит (рисунок 26) из зубчатой обоймы 1, укрепленной шпонкой на валу мотор-редуктора, и зубчатой втулки 2, сидящей на шпонке на промежуточном валу. Зубья втулки входят во впадины обоймы. Муфта передает крутящий момент, но не соединяет валы жестко по оси.


Уплотнения

Для создания герметичности между неподвижным корпусом аппарата и вращающимся валом служит уплотнение. В зависимости от физико-химических характеристик и параметров рабочих сред, а также требований производственной санитарии, техники безопасности и пожароопасности аппараты для перемешивания жидких сред комплектуются сальниковыми или торцевыми уплотнениями, гидрозатворами или имеют герметичный привод.

Сальниковое уплотнение состоит из корпуса, грундбуксы, нажимной втулки, сальниковой и стягивающих шпилек (рисунок 27). Уплотнение достигается прижатием сальниковой набивки к вращающемуся валу. Между валом о грундбуксой остается зазор 0,5 - 0,75 мм, а между валом и нажимной втулкой – несколько – больший зазор (1 - 1,5 мм). Эти зазоры устраняют возможность износа вала в указанных местах. Для изготовления грундбуксы и нажимной втулки используется чугун. При отсутствии зазора между валом и грундбуксой последняя должна изготовляться из бронзы.

1 - корпус; 2- нажимная втулка; 3- набивка; 4 - упорное кольцо (грундбукса).

Рисунок 27 - Сальник.

В некоторых случаях сальниковое устройство одновременно является опорой для вала (подшипником скольжения). Тогда зазор между валом и нажимной втулкой делается минимальным, т.е. на посадке скольжения. Нажимная втулка снабжается устройством для подачи и распределения смазки и изготовляется из бронзы или снабжается бронзовым вкладышем.

Cальник (рисунок 28) в середине слоя сальниковой набивки имеет сальниковое кольцо, которое обеспечивает равномерный подвод смазки по всему периметру вала в середину набивки. Для отвода тепла сальник снабжается охлаждающей рубашкой.

1 - корпус; 2- рубашка; 3- нажимная втулка; 4- набивка; 5- смазочное кольцо; 6- упорное кольцо (грундбукса).

Рисунок 28 - сальник со смазывающим кольцом.

В качестве сальниковых набивок чаще всего применяются хлопчатобумажные, пеньковые и асбестовые материалы.

Ниже приведены предельные температуры, при которых могут использоваться набивки.

Таблица 1.2 - Предельные температуры для сальниковых набивок.

Перечисленные набивки могут применяться при давлениях 0,6-4 Мпа в зависимости от температуры и используемого пропитывающего состава. Пропитка служит для улучшения герметизации и снижения коэффициента трения набивки о вал. Для пропитки набивок применяют сало, парафин, битум, графит, жидкое стекло, тавот, вискозин и т.п.

Из указанных выше набивок следует отметить фторопласт. Он имеет малый коэффициент трения, поэтому срок его службы в несколько десятков раз больше, чем у остальных материалов. Этому способствует также его высокая химическая стойкость. Недостатки фторопласта – сравнительно высокая твердость (что требует больших усилий при затяжке сальника) и высокая стоимость. Эти недостатки устраняются в набивке из асбестового шнура, пропитанного фторопластовой суспензией.

При высоких температурах (t > 300° С) используются сухие набивки. Наиболее распространенная сухая набивка марки АГ-50 состоит из 50% графита, 45% длинноволокнистого асбеста и 5% алюминиевой пудры. Утечка уплотняемой среды в сухих набивках происходит вследствие их пористости. Даже при высоких давлениях прессования набивки (30 - 60 МПа) она остается пористой, так как составляющие её компоненты – асбест и графит – являются пористыми телами.

Сальниковые уплотнения применяют в аппаратах, работающих при давлениях до 0,1 МПа и температуре до 70°. Их нельзя применять при вакууме, переработке в аппаратах ядовитых и взрывоопасных сред. Скорость вала – от 5 до 320 об/мин.

Для нормальной работы сальника необходимо, чтобы усилие прижатия нижних слоев к валу равнялось давлению среды. Усилие прижатия набивки к валу действует в радиальном направлении, тогда как поджим набивки нажимной втулкой производится в осевом направлении. Схема работы сальника изображена на рисунке 29. Если бы набивной служила идеальная жидкость, то осевое и радиальное усилие были бы равны (Р х = Р у) во всех её участках. Однако, поскольку набивка является деформируемым твердым телом, то Р х <= Р у и, кроме того, сила прижатия набивки к валу будет изменяться по высоте сальниковой камеры вследствие трения набивки о вал и корпус при её деформации, т.е. при сжатии.

1 - вал; 2 - нажимная втулка; 3- корпус.

Рисунок 29 - Схема распределения усилий в сальнике.

Связь осевого и радиального усилий можно выразить зависимостью:

Величина m зависит от материала набивки, давления и лругих факторов и изменяется в пределах от 1,5 до 5.

Закон изменения осевой силы по высоте сальника можно представить следующим образом:

, (1.40)

Где S=(D-d)/2 ; f=m ТР /m ; m ТР – коэффициент трения набивки о вал и корпус сальника.

В нижней части при у=0 справедливо равенство Р у =Р 0 , а верхней при y=h – равенство Р у =Р 0 ехр(2 f h/S). Величина осевого усилия в верхней части позволяет по площади сечения набивки определить усилие затяга и рассчитать стяжные шпильки.

При совместном решении уравнений (1.39) и (1.40) получим закон изменения радиальной силы по высоте набивки, т.е. силы прижатия набивки к валу:

, (1.41)

Эпюра изменения силы прижатия набивки к валу изображена на рисунке 29. При удалении от нажимной втулки эта сила уменьшается. При большой высоте сальниковой набивки уменьшение радиальной силы будет значительным. Эффективное перераспределение радиальной силы может быть достигнуто в конструкции двойного сальника, однако, двойной сальник применения не находит, так как его эксплуатация очень сложна.

Если бы набивка являлась абсолютно твердым телом, то в противоположность допущению об идеальной жидкости, прижатие набивки к валу должно полностью отсутствовать. Для деформируемого твердого тела усилие прижатия набивки к валу будет составлять некоторую часть от осевого усилия. Увеличение силы прижатия можно достигнуть конструктивным приемом – изготовление колец уплотнительной набивки с конусными поверхностями. Для реальных набивок этот прием широко используется.

Определим мощность, теряемую на трение в сальнике. Для элемента набивки высотой dy сила трения равна:

После подстановки значения Р х из уравнения (1.41) и интегрирования в пределах от 0 до h получаем:

, (1.43)

С учетом f=m тр /m имеем:

, (1.44)

Мощность теряемая на трение, будет равна:

, (1.46)

Коэффициент трения f при вращении вала имеет меньшее значение, чем при неподвижном вале, кроме того, он изменяется при изменении давления. Учесть все это для разнообразных набивок при использовании уравнения (1.45) сложно, поэтому переходят к эмпирической зависимости (1.46), которая для практических расчетов принимает вид:

Таблица 1.3 - Влияние геометрических размеров сальниковой набивки на потери мощности.

Ширина сальниковой набивки S ,мм определяется по диаметру вала:

, (1.48)

Торцевое уплотнение. В этом уплотнении герметичность достигается за счет плотного поджатия по торцевым плоскостям двух деталей – вращающейся и неподвижной. Герметичность в таком соединении может быть достигнута только при высоком качестве обработке прилегающих поверхностей. Неровности 1мкм нарушают нормальную работу торцевого уплотнения. Поверхности трения подвергаются шлифовке и притирке, и имеют высокую чистоту обработки (№ 10 - № 12), они могут быть плоскими, сферическими или конусными. Плоские поверхности применяются чаще, т.к. при доводке легче получить хорошую чистоту поверхности трения, ширина кольцевой поверхности трения не должна быть большой (меньше 6 - 8 мм).

В химической промышленности торцевые уплотнения применяются не только для реакторов, но и для центробежных насосов. Торцевое уплотнение для герметизации аппаратов представлено на рисунке 30. Кольцо 2 получает вращение от вала через водило 4, состоящее из двух половинок, стягивающих вал, и через шпильки 3. Неподвижное кольцо 7 соединено с сильфоном. Тяги 6 с пружиной дают возможность регулировать силу поджатия колец 2 и 7, сильфон 8 позволяет компенсировать биение вала.

1 - корпус; 2 - вращающееся кольцо; 3 - шпилька; 4 - водило; 5 - пружина; 6 - тяга; 7 - неподвижное кольцо; 8 - сильфон.

Рисунок 30 - Торцевое уплотнение.

уплотнение (рисунок 30) работает при давлении 2* 10 3 - 1,6* 10 6 Па, температуре до 250 ° С и частоте вращения до 10 с -1 .

Достоинства – меньшие утечки, чем в сальнике, так как при работе под вакуумом подсос воздуха отсутствует, потери мощности составляют десятые доли потерь мощности на трение в сальнике, не требуется обслуживания, что объясняется большой износостойкостью пары трения (а следовательно, долговечностью) и хорошей работой при биениях вала.

Недостатки – высокая стоимость и сложность ремонта.

Основным узлом торцевого уплотнения является пара трения. Материал, из которого она изготовлена, должен обладать износостойкостью и малым коэффициентом трения. Используются следующие материалы: кислостойкая сталь – одно кольцо; углеграфит, бронза или фторопласт – другое кольцо. Фторопласт применяется только в случае небольших давлений и при невысоких скоростях пары трения, так как он обладает хладотекучестью. По конструкции торцевое уплотнение может быть внутренним и внешним, одинарным и двойным. Уплотнение, изображенное на рисунке 30, является внешним.

У внутреннего уплотнения вращающееся кольцо и нажимные пружины расположены внутри аппарата в рабочей среде. Двойное уплотнение имеет две пары трения и практически представляет собой два последовательных одинарных уплотнения. В двойном уплотнении между двумя парами трения помещается запирающая среда, предотвращающая утечки и отводящая тепло трения.

В химической промышленности наиболее распространенными являются следующие типы торцевых уплотнений: а) двойное торцевое уплотнение типа ТД (левая часть рисунок 31), предназначенное для герметизации валов аппаратов для перемешивания взрывоопасных, токсичных, пожароопасных, ядовитых и подобных им сред при давлениях до 0,6 МПа (тип ТД-6) и при давлениях до 3,2 МПа (тип ТД-32); б) двойное торцевое уплотнение ТДП (правая часть рисунок 31) с встроенным подшипником, предназначенное для герметизации валов аппаратов для перемешивания взрывоопасных, токсичных, ядовитых и подобных им сред; в) торцевое уплотнение типа ТСК, в котором использован сильфон из стали 12Х18Н10Т (рисунок 32), предназначенное для герметизации валов аппаратов для перемешивания взрывоопасных, токсичных и ядовитых сред, находящихся под давлением.

1 - неподвижные уплотнительные кольца; 2 - подвижные уплотнительные кольца; 3 - пружина; 4 - корпус; 5 - встроенный опорный подшипник.

Рисунок 31 - Двойное торцевое уплотнение типа ТД (левая часть рисунка) и типа ТДП (правая часть рисунка).

Данные торцевые уплотнения применяют в аппаратах, работающих при избыточном давлении до 1,6 МПа или остаточном давлении не менее 0,0027 МПа и температуре от -20 до +50 ° С.

Конструкция торцевого уплотнения (рисунок 32.), состоящая из под- вижного кольца 5, закрепленного на валу с помощью водила 2, и неподвижного кольца 6, плотно прижимаемого торцевой поверхностью к неподвижному кольцу пружинами 4 и гайками 3. Неподвижное кольцо 6 соединено болтами 10 с узлом сильфона 7. Корпус 8 закрыт сверху крышкой 1 и прикреплен фланцами и болтами 9 к крышке аппарата.

1 - крышка; 2 - пружина; 3 - подвижное кольцо; 4 - неподвижное кольцо; 5 - сильфон; 6 - корпус; 7 - болт.

Рисунок 32 - Торцевое уплотнение типа ТСК.

Сильфон представляет собой тонкостенную трубку с гофрированной поверхностью.

Смазку трущихся колец и охлаждение производят проточной водой, циркулирующей в полости крышки. Вода, попавшая через уплотнительную поверхность, собирается в нижней части корпуса, называемой уловителем, и выводится через штуцер. Неподвижные и подвижные кольца (пары трения) изготовляют из углеграфита, сталей 12Х18Н10Т, 40Х13, 95Х18, сплавов хостеллой Д или ситаллов.

Рассмотрим работу торцевого уплотнения (рисунок 33).

Рисунок 33 - Движение среды в зазоре между кольцами торцевого уплотнения

Движение среды в зазоре между кольцами в цилиндрических координатах описывается уравнением:

, (1.53)

В торцевом уплотнении одно из колец вращается, поэтому кроме сил давления и трения на величину утечек оказывает влияние сила инерции. Если угловую скорость вращения среды в зазоре определять как среднюю арифметическую угловых скоростей вращения колец, то уравнение (1.61) с учетом силы инерции примет вид:

, (1.65)

После интегрирования и преобразования величины утечек определятся выражением:

, (1.66)

Таким образом, повышение частоты вращения вала увеличивает утечки при работе аппарата под давлением и уменьшает утечки при работе аппарата под вакуумом.

Герметичные электроприводы . Аппараты для перемешивания высокотоксичных, высоко агрессивных или пожароопасных сред обычно комплектуют герметичными электроприводами. Приводы этого типа представляют собой конструкцию, в которой активные элементы ротора и статора электродвигателя защищены от воздействия перемешиваемой среды с помощью специальной изоляции (мокрый статор) или специальных защитных гильз (сухой статор) . Герметичные электроприводы с "мокрым" или "сухим" статором могут быть газозаполненными и жидкостнозаполненными.

В газозазаполненном электроприводе (рисунок 35) ротор, вращающийся в газовой полости, установлен на подшипниках качения. Статорная полость электродвигателя защищена от контакта с парами перемешиваемой среды тонкостенной защитной гильзой 5. В случае необходимости защитная гильза может быть также установлена на роторе 11. В электроприводах по подобного типа подшипники качения обычно смазывают консистентной или обычной смазкой, подаваемой через штуцер 9. Герметичный элект

Введение

Состояние, направление и перспективы развития ремонтных служб на предприятиях строительных материалов.

Состояние и перспективы развития ремонтных служб на предприятиях строительных материалов полностью зависят от финансового состояния и качества работы этих предприятий. Успешно работающие предприятия имеют финансовые и материальные средства для того, чтобы обеспечить качественную работу и развитие своих ремонтных служб путём замены и модернизации устаревшего технологического оборудования, приобретения современного ремонтного оборудования, материалов, запасных частей. Плохо работающие предприятия из-за недостатка материальных и финансовых ресурсов обеспечить всем необходимым ремонтные службы не могут, что отрицательно сказывается на их работе и развитии.

В настоящее время основными направлениями развития ремонтных служб предприятий строительных материалов являются:

1) повышение уровня их механизации, что улучшает производительность труда ремонтных рабочих;

2) внедрение в практику работы современных передовых технологий ремонта и восстановления неисправных деталей машин что повышает их надёжность и долговечность, сокращает аварийность;

3) совершенствование организации ремонтов и технического обслуживания технологического оборудования за счет применения прогрессивных методов и способов ремонта машин;

4) широкое применение материалов-заменителей дорогостоящих цветных металлов и сплавов при ремонте оборудования;

5) ужесточение требований к качеству используемых запасных частей, ремонтных материалов и выполнения ремонтных операций;

6) повышение качества ремонтных работ путём повышения квалификации ремонтного персонала посредством различных форм обучения.

Роль и значение ремонтных служб для качества работы предприятий

Устойчивая и успешная работа предприятий зависит от состояния и качества работы технологического оборудования. Находящееся в хорошем техническом состоянии технологическое оборудование имеет низкий уровень аварийности, высокий коэффициент использования и эксплуатационные показатели, производит продукцию высокого качества. Это позволяет предприятию ритмично работать, выпускать большой объём продукции с относительно низкой себестоимостью, так как расходы по содержанию оборудования ложатся на себестоимость продукции, что, в конечном счёте, делает её конкурентоспособной на рынке. Плохое техническое состояние технологического оборудования оказывает отрицательное воздействие на работу предприятия в целом: частая его аварийность снижает объёмы выпускаемой продукции, что, в конечном счёте, делает её конкурентоспособной на рынке.

Плохое техническое состояние технологического оборудования оказывает отрицательное воздействие на работу предприятия и потому частая его аварийность снижает объёмы выпускаемой продукции, а неудовлетворительное техническое состояние снижает уровень её качества и повышает, себестоимость, так как увеличиваются расходы на ликвидацию аварий.

Так как основной задачей ремонтных служб предприятий строительных материалов является поддержание технологического оборудования в исправном состоянии, поэтому качество их работы, напрямую влияет па качество работы предприятий в целом.

Значение качества капитальных ремонтов для долговечности машины

Капитальные ремонты машин проводятся с целью восстановления работоспособности, утраченной в процессе эксплуатации из-за изнашивания других неисправностей деталей и узлов. Качественно выполненные капитальные ремонты повышают надёжность и долговечность машин, так как восстанавливаю зазоры и натяги в сопряжениях деталей и машин в целом. Поэтому долговечность машин можно увеличить только повышением качества их эксплуатации, технического обслуживания и ремонтов.

1. Общая часть

1.1 Краткая характеристика предприятия и его работы

ОАО "Красносельскстройматериалы" является крупнейшим производителем строительных материалов в Республике Беларусь. Его основой является цементный завод, производящий окло 1.5 млн.тонн в год.Кроме него в состав ОАО входят:

1) завод асбестоцементых изделий, выпускающий 1160 километров условных асбестоцементных труб,112,8 млн. условных асбестоцементных волнистых листов,60 тыс.м тротуарных плит, 50 тыс.тонн сухих строительных смесей и 100тонн полиэтиленовой плёнки в год;

2) известковый завод, выпускающий 431тыс.тонн извести и 70 тыс.тонн мелкогранулированного мела в год.

Продукция ОАО "Красносельскстройматериалы" пользуется большим спросом как внутри страны, так и в странах ближнего и дальнего зарубежья. Технологическое оборудование предприятия работает в тяжёлых условиях в составе поточных технологических линий, поэтому на поддержание его в работоспособном состоянии расходуются очень большие средства.

1.2 Существующая на предприятии организация капитальных ремонтов оборудования

Ремонтной базой ОАО "Красносельскстройматериалы" служит ремонтно-механический цех, силами которого выполняются капитальные ремонты технологического оборудования. Капитальные ремонты проводятся по годовым и месячным графикам, разрабатываемым отделом главного механика. Ответственным за их подготовку и проведение является главный механик предприятия. Машины в капитальный ремонт принимаются комиссией под председательством главного инженера предприятия в составе: главного механика и главного энергетика, механика и начальника цеха-владельца машины и руководителя ремонта, назначаемого из инженерно-технических работников (ИТР) РМЦ. Эта же комиссия принимает отремонтированную машину в эксплуатацию.

1.3 Применение, назначение и условия работы машины, их влияние на изнашивание деталей. Список быстроизнашивающихся деталей

Сушильный барабан на цементном заводе ОАО "Красносельскстрой-материалы" используется для сушки гранулированного шлака, который добавляется в клинкер при помоле его на цемент. Установлен он вне помещения, на открытом воздухе. Его детали работают в условиях переменных нагрузок, а корпус-при высоких температурах и влажности материала. Это отрицательно сказывается на их прочности из-за окисления и вызывает, кроме того, образивный износ. К быстроизнашивающимся деталям сушильного барабана относятся: корпус барабана, пересыпные полки, зубчатые колёса, подшипники, оси роликов, валы.

1.4 Обоснование темы дипломного проекта

В организации капитальных ремонтов технологического оборудования на ОАО "Красносельскстройматериалы" имеется ряд недостатков: не рассчитывается потребность рабочих и ремонтного оборудования для выполнения ремонта, поэтому не выдерживаются сроки простоя машин в ремонте; не разрабатывается подробно технология разборки, сборки машин и ремонта и восстановления их деталей и узлов; не всегда тщательно подготавливаются ремонты, что отрицательно сказывается на их качестве и сроках проведения. Так как тема дипломного проекта направлена на устранение указанных недостатков, она актуальна для предприятия.

2. Организационная часть

2.1 Выбор метода и способа капитального ремонта

В промышленности строительных материалов (ПСМ) применяется обезличенный и необезличенный методы и подетальный, узловой, агрегатно-узловой, агрегатный, блочный и машиносменный способы ремонта машин. Выбор метода и способа зависит от конструкции машины и их общего количества, применяемого в данном цехе, формы организации ремонтных служб. Т. к. на ОАО "Красносельскстройматериалы" для проведения капитальных ремонтов машин имеется ремонтный фонд запасных частей, узлов и агрегатов машины (редукторов, валов, их сборочных единиц и деталей) наиболее подходящим для капитального ремонта сушильного барабана будут обезличенный метод и агрегатно-узловой способ, которые принимаем за основу. При выбранном способе ремонт сушильного барабана заключается в том, что неисправные узлы и агрегаты (роликоопоры, подвенцовая шестерня и т. д.) заменяются новыми или отремонтированными, заранее подготовленными, взятыми из ремонтного фонда. При этом сокращается время простоя машины в ремонте и снижается разряд ремонтных работ. Обезличенный метод состоит в том, что неисправные детали, узлы и агрегаты снимаются с машины и отправляются на ремонт в ремонтно-механический цех (РМЦ) и на данную машину уже не устанавливаются. Он также уменьшает время простоя машины, повышает качество и снижает затраты труда на ремонт.

2.2 Сетевой график капитального ремонта машины

Рис 2.2 Сетевой график капитального ремонта сушильного барабана.


Построение сетевого графика капитального ремонта машины, определение продолжительности ремонта позволяет наглядно представить весь ремонтный процесс. Показывает последовательность операций и их взаимосвязь. Даёт возможность определить трудоёмкость ремонтных работ и время простоя машины в ремонте.

Таблица 1. Перечень работ при капитальном ремонте сушильного барабана

Номер и наименование ремонтной работы

Трудо ёмкость, ч/час

Кол-во исполнителей

Время выпол нения, часы

Услов -ное обозначение

Чистка, мойка, дефектовка корпуса барабана, пересыпных полочек, бандажей и роликоопор

Ремонт корпуса барабана, пересыпных полочек, бандажей и роликоопор

Демонтаж привода и системы смазки

Демонтаж уплотнений барабана

Демонтаж барабана

Демонтаж роликоопор

Чистка,мойка,дефектовка фундаментных плит

Ремонт фундаментных плит

Установка роликоопор

Установка барабана

Установка уплотнений

Установка привода и системы смазки

Обкатка и испытание машины, пуск в эксплуатацию

Разборка привода и системы смазки на детали, их чистка, мойка, дефектовка

Ремонт деталей привода и системы смазки

Сборка привода и системы смазки

Чистка, разборка, мойка, дефектовка уплотнений

Ремонт уплотнений

Чистка, мойка, дефектовка и разборка роликоопор барабана

Ремонт роликоопор

Сборка роликоопор





Строим сетевой график по данным таблицы 1. Выписываем из сетевого графика капитального ремонта сушильного барабана все возможные пути ремонта машины:

1 путь – L1 - (1-2) - (2-3) - (3-4) - (4-5) - (5-6) - (6-7) - (7-8) - (8-9) - (9-10) - (10-11) - (11-12) - (12-13) - (13-14);

2 путь - L2 - (1-2) - (2-3) - (3-4) - (4-15) -(15-16) - (16-12) - (12-13) - (13-14);

3 путь - L3 - (1-2) - (2-3) - (3-4) - (4-5) - (5-6) - (6-7) - (7-18) - (18-19) - (19-9) - (9-10) - (10-11) - (11-12) - (12-13) - (13-14);

4 путь - L4 - (1-2) - (2-3) -- (3-4) - (4-5) - (5-17) - (17-11) - (11-12) - (12-13) - (13-14);

Определяем время простоя (ротора) сушильного барабана на каждом из путей:

t{L1) =1+20 +1+1+1+1+1+7+2+1+1+6+ 48 -91ч;

t (L2) = 1 + 20 + 1 + 2 + 8 + 3 + 6 + 48 = 89 ч;

t(L3) =1+20 +1 + 1 + 1 + 1+3 + 8 + 3 + 2+1 + 1+6 + 48 = 97 ч;

t (L4) = 1 + 20 + 1 +-1 + 1 + 1 + 1 + 6 + 48 = 80 ч;

Путь (L 3) является критическим, т. к. он имеет наибольшее время и его время принимаем за расчётное: t (L3) = tnp = 97 ч.

2.3 Расчёт трудоёмкости ремонтных работ

Определяем фактическую трудоёмкость слесарных и сварочных работ при выполнении одного капитального ремонта


где Тк - полная нормативная трудоёмкость одного капитального ремонта Тк = 800чел.ч. (Л-4) - С. 184.

nразб, nсб, ncв - процент трудоёмкости соответственно разборочных, сборочных и сварочнах работ от полной; nразб = 14%, nсб = 16%, ncв = 12%.

К1 - коэффициент, учитывающий срок эксплуатации машины; принимаем К1 =1,1;

К2 - коэффициент, учитывающий место проведения ремонта; принимаем К1 = 1,2 - при ремонте вне помещения;

К3 - коэффициент, учитывающий температуру среды; принимаем К1 =1. (Л - 4) - С. 19, табл.1.

Tсл = 0,01 ×960×(14+ 16) × 1,1× 1,2 × 1 =317чел.ч.;

Tсв = 0,01 × 800 ×12 × 1,1 × 1,2 × 1= 127 чел.ч.

Определяем суммарную трудоёмкость слесарных и сварочных работ по формуле:

Tсум. = Tсл + Tсв = 317 + 127 = 444 чел.ч.

2.4 Расчёт потребности рабочих для выполнения капитального ремонта

Определяем время простоя машины в сутках:

tnp = tnp / 8 × n см

где п см - сменность работы ремонтных бригад; принимаем п см = 3;

tпр = 97/ 8 × 3 = 4 сут.

Определяем фонд времени одного слесаря и сварщика за весь период ремонта:

Фсл = Фсв = 8 × tnp = 8 × 4 = 32 ч

Определяем количество слесарей и сварщиков:

mp.cл. = Тcл/Фсл; mр.св. = Тсв/Фсв;

mр.сл. = 317/32 = 10,4;

принимаем тр.сл. = 10 чел.; тр.св. = 127/30,6 = 4 чел. Определяем состав бригад:

1-ая бригада - 4 слесаря и 2 cварщика;

2-ая бригада - 3 слесаря и 1 сварщик;

3-ая бригада - 3 слесаря и 1 сварщик.

2.5 Подбор ремонтного оборудования

Для успешного проведения капитального ремонта сушильного барабана важно обеспечить его необходимым ремонтным оборудованием. Его подбор производится ниже.

Для демонтажа и установки деталей, узлов и агрегатов и их перемещения при разборке и сборке сушильного барабана будет использоваться. Стреловой кран на пневмоколёсном ходу, грузоподъёмностью 250 КН и гидродомкраты грузоподъёмностью 1000КН. Для их зацепки будут использоваться грузозахваточные приспособления, соответствующие их весу.

Для выполнения электросварочных работ двумя сварщиками в каждой бригаде выбираем два сварочных аппарата: один - переменного тока марки СТАН 700, а другой - постоянного тока - ПСО-300. Для выполнения газорезательных работ для каждой бригады подбираем:

1) один комплект газорезательной аппаратуры;

2) баллоны для кислорода и пропан-бутана - по мере потребности;

3) тележку для перевозки газовых баллонов - одну на все бригады.

Для ограждения места проведения электросварочных работ подбираем два переносных щита. Для мойки деталей будет использоваться моечная ванна ОМ-13-16. Для хранения ветоши будет использоваться герметичный металлический ящик, разделённый вертикальной перегородкой на два отсека - для свежей и

Использованной ветоши. Для хранения мелких деталей, снятых с машины и новых, будут использоваться два металлических стеллажа. Для установки на ремонтной площадке снятых с машины роликоопор будут выкладывать клетки из деревянных шпал. В соответствии с Правилами пожарной безопасности на ремонтной площадке будет установлен пожарный щит, оборудованный пожарным инвентарем, и ящик для песка. Для разборки узлов и агрегатов сушильного барабана будут использоваться гидродомкраты и съёмники. Для зачистки сварочных швов и заусениц (задиров) на деталях будет использоваться ручная переносная электрошлифовальная машинка. Для сверления отверстий в деталях будет использоваться электродрель.

2.6 Работа по подготовке капитального ремонта машины

Успешное выполнение капитального ремонта сушильного барабана в значительной мере зависит от его подготовки. Работы по подготовке включают:

– Составление ведомостей дефектов его узлов. Их составляют при остановках сушильного барабана на текущие ремонты и технические обслуживания (ТО).

– Определение объёма и номенклатуры работ по предстоящему капитальному ремонту на основе данных ведомостей дефектов.

– Составление сметы затрат на предстоящий капитальный ремонт, разработка технологических карт на ремонт и восстановление неисправных деталей и узлов, которые будут заменены во время ремонта, их чертежей.

– Изготовление или приобретение материалов и запасных частей, которые потребуются для капитального ремонта. После изготовления или приобретения они должны пройти технический контроль качества, доставлены на ремонтную площадку и подготовлены к хранению до начала ремонта.

– Подготовку ремонтной площадки, при которой с неё удаляют все посторонние предметы, ограждают. Подводят сжатый воздух и воду, оборудуют посты для подключения ремонтного оборудования.

– Доставку на ремонтную площадку ремонтного оборудования, его установку, осмотр, подключение и проверку в работе.

– Создание ремонтных бригад из рабочих РМЦ и их инструктаж по технике безопасности при выполнении ремонтных работ, по пожарной безопасности и по технологии ремонтных работ.

– Разработку графика проведения капитального ремонта.

Непосредственно перед остановкой на капитальный ремонт сушильный барабан должен быть очищен снаружи и изнутри от остатков материала, грязи и масла и отключён от электрической сети.

2.7 Сдача машины в ремонт

В капитальный ремонт сушильный барабан сдается в соответствии с годовым и месячным графиками ремонтов и ТО оборудования начальником цеха-владельца. Принимает его в ремонт комиссия под председательством главного инженера и главного энергетика, представителя отдела техники безопасности, механика цеха и руководителя капитального ремонта. Комиссия проверяет, как подготовлен ремонт, осматривает сушильный барабан, и, при удовлетворительных результатах, – принимает его в ремонт. Приёмка оформляется актом установленной СТОиР формы, который подписывают все члены комиссии. Если же комиссия обнаружит какие-либо недостатки в подготовке ремонта, она переносит срок приёмки и выдаёт предписание ответственным за подготовку (главный механик) на устранение выявленных недостатков.

2.8 Приёмка машины из ремонта и сдача в эксплуатацию

Из ремонта сушильный барабан принимается после обкатки и испытания той же комиссией, которая принимала его в ремонт. Комиссия знакомится с актом обкатки и испытания, осматривает машину, оценивает качество ремонта и сборки и принимает сушильный барабан в эксплуатацию при удовлетворительной оценке качества ремонта. Приёмка оформляется актом, подписываемым всеми членами комиссии. Если же при приёмке будут обнаружены какие-либо недостатки, комиссия устанавливает новую дату приёмки.

3. Технологическая часть

3.1 Чистка, мойка машины, её деталей, узлов и агрегатов

Чистка и мойка сушильного барабана снаружи и внутри его корпуса выполняется обслуживающим его технологическим персоналом при подготовке к ремонту. Для этого используются ломы, лопаты, металлические скребки и щётки, ветошь, вода под давлением и сжатый воздух из резиновых шлангов. В процессе ремонта сушильного барабана чистка и мойка агрегатов, узлов и деталей производится в несколько стадий: после снятия их с машины, разборки агрегатов на узлы и узлов -на детали. Это делается с целью провести их качественную дефектовку и ремонт, т. к. грязь, ржавчина и смазка затрудняют проведение таких работ. С крупных деталей и узлов сушильного барабана (роликоопор, их рам, корпуса, барабана, бандажей, корпусов подшипников) вначале лопатами, ломиками, скребками удаляют грязь, затем обдувают сжатым воздухом. Относительно небольшие детали и узлы моют в моечной ванне, установленной на ремонтной площадке, в керосине или дизельном топливе и моющих растворах вручную с применением ветоши. Ржавчину удаляют растворами 25% соляной кислоты с добавлением 1% цинка, выдерживая в течение 2-3 часов, нагар удаляют выдержкой деталей в ванне с раствором кальцинированной и каустической соды, мыла при температуре 80-90°С, после чего промывают сначала в холодной, а затем в горячей воде или обработкой стальными щётками, шаберами.

3.2 Технология разборки машины, применяемое оборудование и инструменты

Для разборки сушильного барабана используется кран-стреловой, грузоподъёмностью 25 тс, гидродомкраты грузоподъёмностью 100 тс, переносные инвентарные леса Q - 5тс, винтовые съёмники и, для разборки снятых узлов - оборудование ремонтно-механического цеха предприятия. Разбирают его в следующем порядке: система подачи и сжигания топлива - электродвигатель - редуктор - ограждения - подвенцовая шестерня и венцовая шестерня,- уплотнения корпуса барабана - корпус барабана - роликоопоры. Рамы роликоопор ремонтируют на месте установки.

У венцовой шестерни вначале разбирают болтовые соединения крепления верхней половины к корпусу и ко второй половине (для этого перед разборкой барабан приводом поворачивают так, чтобы плоскость её разъёма была горизонтальной), затем верхнюю половину снимают и укладывают на шпальные клетки на ремонтной площадке. Затем наматывают на корпус канаты лебёдок, закрепив их концы на корпусе, поворачивают его на 180°. И так же снимают вторую половину. Корпус барабана снимают так: под него устанавливают четыре гидродомкрата, на них укладывают два заранее изготовленных стальных пояса, домкратами поднимают его на высоту 150-200 мм, под пояса укладывают клетки из деревянных брусьев и на них опускают пояса.

Роликоопоры вначале отсоединяют от рамы, разбирают их регулировочные устройства и лебёдками или домкратами корпуса их подшипников перемещают от оси барабана по направляющим рамы и затем снимают с неё.

3.3 Дефектовка деталей и узлов, применяемые инструменты

Дефектовкой деталей называется установление их технического состояния. Дляэтого применяются осмотры и измерения инструментами.

Корпус барабана может иметь следующие дефекты:

Износ внутренней поверхности, трещины. Для определения износа к стенке барабана параллельно оси прикладывают поверочную линейку и измерительной линейкой измеряют зазоры между их поверхностями. Отдельные участки корпуса,имеющие износы стенок свыше 20% их толщины, выбраковываются. Трещины определяются визуально. Детали ячейковых теплообменников и пересыпных полок внутри барабана могут иметь износы,изгиб и скручивание, определяемые визуально или измерением их толщины штангенциркулями, линейками.

Бандажи могут иметь износ в виде раскатки и шелушения поверхностей катания, задиры и трещины. Величину износов определяют измерением их толщины линейками и диаметров в 3-х сечениях (по краям и посредине), для чего рулетку обматывают вокруг бандажа и измеряют длину окружности. Длину окружностей можно измерить во время работы барабана прикладыванием калиброванных роликов к поверхности катания. Шелушение определяется визуально. Задиры и трещины определяются визуально. Бандажи выбраковываются при износе свыше 20%.

Опорные и упорные ролики могут иметь износ опорной поверхности, в результате чего появляется овальность и конусность, задиры и трещины. Износ их определяется измерением диаметров 3-х сечениях рулеткой, вычисляется овальность и конусность. Ролики выбраковываются при трещинах глубиной более 20% толщины кольца и уменьшении его из-за износа так же на 20%.

У венцовой и подвенцовой шестерён происходит износ, выкрашивание и поломка зубьев, и задиры на их поверхностях, образовавшие трещин: на ободе. Износ зубьев определяется измерением штангензубодером или шаблоном и набором щупов их толщины. При износе зубьев свыше 30%, выкрашивании и поломке шестерни подлежат выбраковке. Шестерни редуктора имеют такие же неисправности.

Посадочные поверхности подвенцовой шестерни, роликов, шестерён редуктора, муфт могут иметь износ, задиры, овальность и конусность, трещины на ступицах.

Износ определяется измерением их диаметров нутромером, остальные дефекты - визуально. Выбраковывают при износах, свыше допустимых, и сквозных трещинах. Шпоночные пазы могут иметь износ в виде смятия боковых поверхностей, который измеряется шаблонами и набором щупов.

Подшипники качения могут иметь износ в виде раковин поверхностей колец, тел качения / трещин, разрушение, смятие, трещины и разрушение сепараторов. Смятие, трещины определяются визуально, а износы - измерением индикаторами часового типа биения наружных колец относительно внутренних в приспособлениях. При износах, свыше допустимых (определяются по таблицам), трещинах и поломках подшипники выбраковываются.

Рамы роликоопор могут иметь коррозию, изгиб и скручивание отдельных элементов. Трещины и поломку. Изгиб и скручивание определяется измерением зазоров измерительной линейкой, между поверхностями элементов и прикладываемой к ним поверочной линейки, остальные дефекты - визуально.

Вал приводной, валы редукторов и оси роликов могут иметь следующие неисправности:

1) износ рабочих поверхностей шеек, задиры, износ стенок шпоночных пазов, задиры на них, износ шлице;

2) износ резьбовых поверхностей, смятие и срыв ниток резьбы;

3) скручивание шеек, изгиб осей.

Для определения износа шеек микрометром измеряют их диаметры в 3-х сечениях (на расстоянии 5 мм от концов и посредине) в вертикальной и горизонтальной плоскостях, подсчитывают овальность и конусность и сравнивают с допустимыми, определяемыми по справочным таблицам.

Износ боковых стенок шпоночных пазов в виде смятия определяют, измеряя штангенциркулем их ширину и сравнивая с чертёжными размерами, или с помощью шаблонов и наборов щупов. Износ шлицев измеряют шаблонами и набором щупов. Задиры определяют визуально при осмотре.

Износ резьб определяют, проверяя их резьбовыми калибрами, а срыв ниток - визуально.

Изгиб валов определяют измерением индикаторами часового типа. Для этого вал закрепляют в центрах токарного станка или укладывают шейки на призмы, установленные на поверочной плите. Индикатор закрепляют в штативе, который устанавливают на направляющие токарного станка или поверочную плиту.

Измерительный стержень индикатора подводят к валу, устанавливают стрелку индикатора на ноль поворотом шкалы и, поворачивая вал на 90°, 180°, 270° и 360°, записывают показания индикатора. Наибольшее из них будет равно величине изгиба вала.

Скручивание шеек определяют, устанавливая шпоночные пазы горизонтально и измеряя высотное положение их концов штангенрейсмусом.

3.4 Технология ремонта и восстановления деталей

Ремонт сушильного барабана начинается с измерения отклонений оси его корпуса (излома), при условии, что роликоопоры не требуют замены. Измерения производятся нивелиром; и по их результатам производится регулировка положения роликов относительно оси корпуса барабана.

При дефектах участков корпуса барабана и бандажей, вызывающих выбраковку, их заменяют. Для этого мелом наносятся окружности, по которым будет разрезаться корпус и удаляемый участок (его стропят и стропы навешивают на крюк крана), барабан газовыми горелками разрезают по окружностям и повреждённый участок удаляют, а на его место устанавливают заранее изготовленный новый и после центровки с осью барабана, электросваркой прихватывают к оставшимся частям корпуса, убирают подставки и, поворачивая корпус приводом, приваривают к ним сварочной проволокой, используя сварочные автоматы. Трещины, не вызывающие выбраковку корпуса барабана, засверливают по концам сверлом 2-5 мм, снимают фаски и заваривают качественным электродом, или на неё накладывают стальную заплату и приваривают к корпусу. Детали ячейковых теплообменников и пересыпные полки при износах, изгибе и скручивании, превышающих допустимые, срезают газовой горелкой и приваривают электросваркой новые. Износы бандажей и роликов при первых ремонтах устраняют чистовой обточкой. Для этого переносные токарные приспособления закрепляют на раме и опорах роликов и, используя привод для вращения, обтачивают ролики и бандажи под ремонтные размеры, после чего проверяют и регулируют положение роликов. Трещины у роликов и бандажей при глубине, меньше 20% их толщины заваривают так же, как у корпуса барабана.

При первых ремонтах сушильного барабана при износах зубьев венцовой и подвенцовой шестерён и зубчатых колёс редукторов, имеющих ось симметрии, не превышающих 30%, их поворачивают на валах на 180°. При износах свыше 30% и других дефектах - заменяют.

Неглубокие задиры (менее 0,5 мм) рабочих поверхностей зубьев, бандажей, роликов, шеек валов зачищают бархатными напильниками, шлифовальными шкурками, а глубокие - заплавляют сваркой и зачищают шлифовальным кругом. При износе посадочных поверхностей подвенцовой шестерни, зубчатых колёс редукторов, роликов, муфт их наплавляют ручным способом электронаплавки электродами, по составу близкими к сталям этих деталей, отжигают, растачивают на токарных станках и шлифуют на внутришлифовальных станках. При износах шпоночных пазов их заплавляют, зачищают шлифовальным кругом и нарезают новый паз против заплавленного.

Изношенные шейки валов наплавляют сварочной проводкой полуавтоматами в среде защитных газов или ручной электронаплавкой качественными электродами и после отжига обтачивают и шлифуют, на токарных и шлифовочных станках. Резьбовые шейки протачивают и нарезают резьбу номинального размера. Изогнутые валы и оси правят под прессом, предварительно нагрева их до 600°-700°С. При скручивании валов свыше допустимого, их выбраковывают. Задиры на шейках зачищаются "бархатными" напильниками и наждачной шкуркой. Подшипники качения при предельно не допустимых неисправностях не восстанавливаются.

Неисправные элементы при деформациях, свыше допустимых, правят с нагревом или срезают газовой горелкой и приваривают заранее подготовленные. Трещины -завариваются электросваркой.

Для качественного проведения капитального ремонта сушильного барабана необходимо применять ведомости дефектов его узлов, технологические карты ремонта и восстановления деталей, "ремонтные" чертежи.

3.5 Сборка, обкатка и испытание машины

Сборка сушильного барабана производится в порядке, обратном разборке (см. п. 4.2.), и применяется так же оборудование. Отремонтированные детали роликоопор, привода собираются вначале в сборочные единицы, а единицы - в агрегаты (редуктор). Устанавливаются они по отвесам, опущенным с горизонтальных струн. Роликоопоры устанавливают на рамы, совмещая отметки на корпусах подшипников с отвесами, после чего рулеткой измеряют расстояние между осями и отклонение от параллельности. Затем на ролики устанавливают стальной клин с углом в 3°, а на него - уровень и измеряют отклонения углов наклона роликов от угла наклона барабана (3°) и регулируют их положение постановкой металлических подкладок под корпуса подшипников. После регулировки корпуса подшипников крепят к раме. Корпус сушильного барабана вместе с временными опорами приподнимают гидродомкратами, убирают деревянные клетки и бандажами устанавливают на роликоопоры и измеряют и регулируют положение его относительно оси вращения смещением корпусов подшипников роликов на рамах. Затем устанавливают уплотнения концов и привод. Сборка привода начинается с установки одной из половин венцовой шестерни сверху на пакеты пластин, центрируют её относительно оси корпуса барабана, после чего болтами подсоединяют к корпусу. Затем с помощью лебёдок и крана поворачивают корпус барабана на 180° и аналогично устанавливают и крепят вторую половину шестерни и соединяют их между собой болтами. После этого, поворачивая корпус лебёдками через 90° на полный оборот, индикаторами измеряют и регулируют биение шестерни относительно оси вращения (оно не должно превышать 1мм). Подвенцовую шестерню предварительно устанавливают на плиту фундаментную по отвесам, совмещая отметки на корпусах подшипников с отвесами, измеряют боковой (он должен быть не более 0,5 мм) и радиальный (0,25 мм) зазоры, регулируют их смещением корпусов подшипников подвенцовой шестерни. Затем временно закрепляют корпуса подшипников, смазывают несколько зубьев краской и лебёдкой поворачивают барабан. На поверхности зубьев венцовой шестерни остаются отпечатки, по которым судят о правильности зацепления и проводят точную регулировку положения подвенцовой шестерни относительно венцовой. Редуктор предварительно устанавливают на раму, его ведомый вал центрируют с валом подвенцовой шестерни постановкой металлических прокладок под опорную поверхность и перемещением по раме, после чего закрепляют и центрируют вал электродвигателя по ведущему валу. Устанавливают ограждения привода, роликоопор, заполняют смазкой подшипники, редуктор и производят обкатку сушильного барабана. При сборке сушильного барабана используются технологические карты сборки сборочных единиц и машины в целом, технические условия (ТУ) на сборку, паспорт машины. Обкатка сушильного барабана делается с целью приработки его подвижных сопрягаемых деталей (роликоопор, привода), а испытание - для определения качества его ремонта. Режимы обкатки и испытания определяются заводом-изготовителем. Производится опытным слесарем- ремонтником (обычно - бригадиром ремонтной бригады) и обслуживающим его машинистом под непосредственным руководством руководителя ремонта. Перед обкаткой машина тщательно осматривается, все её точки смазки заполняются смазкой, включается электродвигатель, и машина работает 5-6 часов вхолостую. Перед пуском с использованием рычага проворачивают муфту, соединяющую электродвигатель с редуктором и убеждаются, что барабан проворачивается легко и плавно. Во время обкатки следят за правильностью взаимодействия всех деталей и узлов, отсутствием шумов, стуков и вибрации, не характерных для нормальной его работы, за нагревом подшипников (не должен превышать 65°С). При их появлении барабан должен быть немедленно остановлен, выявлены и устранены причины. Если устранение неполадок связано с заменой трущихся деталей, то обкатка повторяется с самого начала. По её окончании барабан осматривается, во всех точках смазки заменяется смазка, и производят его испытание. Для этого разжигается топка, включается дымосос и привод барабана и производится постепенный прогрев его внутренних частей до рабочей температуры. По окончании прогрева включается питатель и подаётся материал на сушку. Подача производится дозировано и ступенчато: вначале - на четверть производительности, затем - на половину, 3/4, и на последней стадии – на проектную. На каждой стадии сушильный барабан работает 1,5-2 часа. Если на последней стадии машина отвечает всем предъявляемым требованиям (производительность, технологические параметры высушенного материала, расход электроэнергии, смазки), испытание заканчивается и составляется акт установленной формы, подписываемый участниками обкатки и испытания. Во время испытания выполняют все работы, производимые при обкатке, и кроме того:

1) по приборам следят за температурой, степенью разряжения в различных зонах внутри корпуса и при необходимости регулируют их, изменяя количество сжигаемого топлива, воздуха в горючей смеси и прикрывая или приоткрывая шибер дымососа;

2) следят за тем, чтобы на каждой стадии материал подавался равномерно и в него не попадали посторонние предметы.

4. Охрана труда и противопожарная защита

4.1 Основные правила техники безопасности при подготовке и проведении капитального ремонта машины

Создание безопасных условий работы ремонтников при подготовке и проведении капитального ремонта машины обеспечиваются выполнением изложенных ниже мероприятий правил техники безопасности.

Все рабочие должны пройти общий инструктаж по технике безопасности и перед выполнением каждой ремонтной работы (операции) - непосредственно на рабочем месте.

Перед использованием ремонтного оборудования и переносного механизированного инструмента оно должно быть осмотрено и определена его исправность. При осмотре необходимо обращать особое внимание на состояние изоляции проводов, наличие и состояние заземления, ограждений, надёжность и исправность крепёжных узлов и их затяжку. Пользоваться неисправным оборудованием и инструментом категорически запрещается. Перед началом работы необходимо проверить его работу "вхолостую".

Для разборки и сборки сушильного барабана будет применяться кран грузоподъёмностью 25О КН (пневмоколёсный) .К его управлению допускаются лица, прошедшие обучение, сдавшие экзамены и имеющие удостоверение на право управления. Зацеплять детали, материалы и другие грузы имеют право рабочие, прошедшие обучение и сдавшие экзамены и имеющие удостоверение стропальщика. Используемые чалочные и грузозахватные приспособления и тара должны иметь прикреплённую к ним бирку, на которой указывается инвентарный номер, дата испытания, грузоподъёмность. Перед применением их необходимо осмотреть и установить исправность. Запрещается поднимать заваленные чем-либо грузы и грузы, вес которых неизвестен, а также откручивать болты крепления детали или узлы, находясь под ними.

Сварщики должны работать в брезентовом костюме и обуви, а для защиты глаз от электрической дуги и пламени горелки – использовать очки и маски со светозащитными стеклами. Перед началом работы необходимо осмотреть сварочный трансформатор и провода. Они должны иметь надёжную изоляцию: отдельные куски проводов должны соединяться болтами с гайками, устанавливаемые в отверстия клемм, а место соединения - изолировано. Заземляющий провод к детали должен подсоединяться быстросъёмной резьбовой струбциной. Место сварки должно ограждаться переносными щитами для защиты вблизи работающих от ослепления сварочной дугой. При сварке и резке металла и при выполнении других работ внутри корпуса барабана работу должны выполнять не менее двух рабочих, один из которых выполняет роль страхующего. Кроме того, должна быть обеспечена надёжная вентиляция внутри корпуса, и использоваться диэлектрические коврики, галоши и перчатки, а для освещения - переносные лампы напряжением не выше 12 В. Газосварочное оборудование (горелки, редукторы, баллоны) перед употреблением должны осматриваться и устанавливаться их исправность. На штуцерах резиновые шланги должны крепиться стальными хомутами, стягиваемыми болтами с гайками. Для подсоединения шлангов к редуктору, а редуктора - к баллонам необходимо пользоваться гаечными ключами из цветных сплавов. Баллоны с газами должны перевозиться на специально оборудованной тележке и располагаться не ближе 10 м от открытого огня и 5 м - от закрытых нагревательных приборов. Необходимо не допускать попадания горюче-смазочных материалов на штуцера горелок, редукторов, баллонов и шлангов, т.к. это может привести к взрыву при подаче газов.

4.2 Основные правила противопожарной защиты при капитальном ремонте машины

Пожарная безопасность ремонтного персонала обеспечивается строгим соблюдением и выполнением изложенных ниже мероприятий и правил. Все участвующие в ремонте рабочие должны пройти инструктаж по пожарной безопасности перед началом работы. При этом им должны быть указаны места, опасные в пожарном отношении, возможные источники возникновения пожара (горюче-смазочные и моющие материалы которые могут воспламениться от электрической дуги, пламени горелки, брызг расплавленного металла и шлака, изоляции электропроводов от короткого замыкания). Каждый, участвующий в ремонте, должен знать, как и что делать при возникновении пожара, как выйти из помещения при необходимости. На ремонтной площадке должны находиться средства пожаротушения (пожарный щит с инвентарём, песок в стальном ящике, брезентовые полости, водяные рукава и гидранты для их подключения).

При возникновении пожара очаг возгорания необходимо потушить, используя воду, песок и полости, огнетушители. При возгорании изоляции электропроводов необходимо их отключить и только после этого тушить сухим песком, порошковыми огнетушителями и накрывать брезентовой полостью. Применять для этого пенные огнетушители, воду, а также сырой песок категорически запрещается. Если потушить очаг не удаётся, необходимо удалить всех людей из помещения в безопасное место и вызвать пожарную команду.

4.3 Охрана окружающей среды при капитальном ремонте машины

Основными загрязнителями атмосферного воздуха рабочей зоны при проведении капитального ремонта сушильного барабана являются газы, выделяющиеся при резке и сварке металлов, и топочные газы с пылью при их удалении. Поэтому место сварки должно оборудоваться приточно-вытяжной вентиляцией, а топочные газы перед выбросом в атмосферу - очищаться от пыли в циклонах и электрофильтрах. Промышленная вода на ремонтной площадке может загрязняться от попадания в неё горюче-смазочных и моющих материалов. Поэтому необходимо эти материалы хранить в герметичной таре в установленных местах. Категорически запрещается сливать их остатки в канализацию помещения, а при проливах - удалять, используя древесные опилки и ветошь. Ветошь, новая и использованная, должна отдельно храниться в металлических закрытых ящиках.

5. Специальная часть

5.1 Схема, устройство и работа машины

На ОАО "Красносельскстройматериалы" для сушки гранулированного шлака применяется прямоточный сушильный барабан. У которого направление движения высушиваемого материала (гранулированного шлака) совпадают с направлением движения топочных газов внутри барабана. Сушильный барабан состоит из следующих основных частей (см. рис. 7.1):

Рис. 5.1 Схема сушильного барабана: 1 - корпус, 2 - бандаж (2 шт); 3 -пересыпные полки, 4 - рама, 5 - роликоопора, 6 - пылевая камера, 7 - уплотнение; 8 - уплотнение, 9 - ролик упорный (2 шт), 10 - венец зубчатый, 11 - шестерня подвенцовая, 14 - кожух, 15 - топка, 16 - бункер. 17 - труба загрузочная, 18 -горелка, 19 - патрубок (2шт), 32 - редуктор, 33 - электродвигатель.

Корпус барабана 1 сварен из отдельных обегаек из листовой стали 09ГС2. Внутри для увеличения теплоотдачи между материалом и топочными газами на отдельных его участках установлены стальные решетки из листовой стали, а на остальных - пересыпные полки 3 приварены к корпусу. При движении материала внутри корпуса его куски захватываются полками 3. поднимаются ими на некоторую высоту и ссыпаются с них, оказываясь в потоке горячих газов. Снаружи на корпус надеты два бандажа 2, которыми он опирается на две роликоопоры. Они представляют массивные стальные цилиндрические кольца, свариваемые из двух половин при монтаже сушильного барабана. Между внутренней поверхностью бандажей 2 и наружной корпуса установлены пакеты стальных пластин, приваренных к корпусу, на которые опираются бандажи. В холодном состоянии между пакетами пластин и бандажами имеются зазоры, которые переходят в натяги в процессе работы из-за нагрева и расширения корпуса барабана. Роликоопоры состоят (см. черт. ДПМА 02 01 00 00 00 80): из пары стальных роликов, напрессованных на оси, на концы которых надеты сферические двухрядные шарикоподшипники, установленные в стальных разъёмных корпусах. Корпуса подшипников установлены на рамах 4 с направляющими, по которым они могут перемещаться с помощью винтовых регулировочных устройств 13, сближаясь друг к другу или отдаляясь, и крепятся к ним болтами. Таким образом производится регулировка положения роликоопор относительно оси корпуса барабана. Барабан 1 установлен под углом 3° к горизонту для того, чтобы обеспечить движение материала внутри него. Во время работы он может смещаться вдоль оси под действием веса, поэтому для предотвращения схода бандажей с роликов роликоопор 5 установлены у нижнего бандажа два упорных ролика 9,11, состоящие из роликов, установленных в роликовых радиально-упорных подшипниках, надетых на неподвижные оси. Верхняя часть корпуса барабана 1 входит в проём в стенке топки 15 для сжигания топлива, а нижняя - в пылевую камеру 6. Пылевая камера 6 имеет патрубки, к которым подсоединяются газоходы для удаления газов из корпуса в пылеосадительные установки для о чистки их от пыли перед выбросом в атмосферу. Для недопущения попадания наружного воздуха внутрь корпуса 1 на его концах установлены уплотнения 7 и 8. Вращается барабан от привода, состоящего из электродвигателя 33, редуктора 32,подвенцовой шестерни 11 и зубчатого венца 10. Устройство и установка подвенцовой шестерни аналогичны устройству роликоопор. Корпуса подшипников подвенцовой шестерни 11 крепятся болтами к неподвижной раме 4. Зубчатый венец 10 состоит из двух половин, скрепляемых болтами. Устанавливается он на приваренных к барабану пакетах пластин и крепится к ним болтами. Сверху венец 10 и подвенцовые шестерни 9, 11 укрыты кожухом 14 для защиты от попадания пыли и в целях обеспечения безопасности обслуживающего персонала. Подача материала из бункера 16 производится через топку, поэтому сушка материала начинается, как только он попадает в нее. Топливо (природный газ) сжигается в горелке 18, куда оно подаётся вместе с воздухом и, смешиваясь, образуют горючую смесь. Газы, образующиеся при сгорании горючей смеси, из горелки попадают внутрь корпуса барабана 1, и, двигаясь по нему под действием разражения, создаваемого дымососом пылеулавливающей установки, отдают тепло непосредственно материалу, стенкам корпуса барабана 1, решётке, пересыпным полкам 3 (а те - материалу), охлаждаются и через патрубки 19 отводятся в пылеулавливающую установку. Работает сушильный барабан следующим образом. Материал (шлак), загружаемый в бункер 25 ленточным питателем, непрерывно поступает по трубе 26 внутрь корпуса барабана 1, проходит по нему и через патрубки 19 пылевой камеры выгружается на ленту ленточного конвейера, который уносит его на дальнейшую обработку.

5.2 Расчёт основных параметров машины

Исходные данные:

1) наружный диаметр барабана - Дб = 2800 мм = 2,8 м; внутренний Дб = 2760 мм = 2,76 м; длина барабана Lб = 20 м;

2) высушиваемый материал - гранулированный шлак плотностью ρ = 700 кг/м 3 ;

3) влажность материала - начальная Wн = 22%, конечная Wк = 3%;

4) частота вращения барабана пб = 4,2 мин 1 . Расчёт производим используя (Л - 1) - С. 163, 164.

5) наклон оси барабана к горизонту, %;ί= %.

Определяем время сушки порции материала:


где β - коэффициент заполнения корпуса барабана материалом, β = 0,1...0,25; принимаем β = 0,2; А - паросъём, кг/(м 3 /ч); А = 45÷ 65 кг/(м 3 /ч); принимаем А = 55 кг/(м 3 /ч);


Определяем производительность сушильного барабана, как транспортирующего механизма:

Пм = А0 × v ×Кз ×ρ

где А0 - площадь внутреннего сечения корпуса барабана, м 2 ;


v - скорость перемещения материала внутри барабана вдоль его оси, м/с;

Кз - коэффициент заполнения материалом объёма барабана; Кз = 0,1;

Пм = 6 × 0,018 ×0,1× 700 = 7,56 кг/с = 27,2 т/ч

Определяем внутренний объём корпуса барабана:

Voб = А0 × L = 6 × 20 = 120 м 2

Определяем производительность сушильного барабана по выходу влаги:

Пw = Пм = [(14-2): (100-14) - 2: (100 - 2)] x 7,56 = 0,9 кг/с

Определяем требуемый объём сушильного барабана, как сушильного агрегата:


Размеры сушильного барабана обеспечивают его работу как теплового агрегата, т. к.

5.3 Расчёт мощности, подбор электродвигателя и кинематический и силовой расчёт привода

Определяем вес вращающихся частей сушильного барабана:

Gвр = Gб + Gm

где Gб - вес барабана в сборе; Gб= 166 КН (заводские данные); Gm - вес материала, находящегося в корпусе барабана, КН;

Gm = V б ×K3×ρ× g=120×0,l × 0,7×9,81 = 82,4 КН;

Gвр = 166+ 82 = 248 КН.

5.3.1 Построение кинемической схемы

Рис.5.2. Кинематическая схема сушильного барабана

5.3.2 Кинематический и силовой расчёт привода

Определяем мощность, затрачиваемую на подъём материала барабаном при сушке по формуле:

Р1 = 1,95 R 3 0б× L×ωб, кВт

где ωб - угловая скорость вращения барабана, рад/с


R б - внутренний радиус барабана, м;

R0б =Д0б/2 = 2,76/2 = 1,38 м

Р1 = 1,95 × 1,38 3 × 20 × 0,21 = 21,5 кВт.

Определяем мощность, расходуемую на преодоление трения в подшипниках качения опорных роликов:

P2 = 0,115 Gвр × r ×ωр, кВт

Gобщ - вес вращательных частей барабана и материала; Свр = 440 КН; r – радиус вращения опорных роликов, м; r = 0,4 м; ωр - угловая скорость вращения роликов, рад/с;


Определяем мощность, расходуемую на преодоление трения качения бандажей по роликам по формуле:

Р3 = 0,0029Gвр× ωб = 0,0029 × 248 × 0,44 = 0,3 кВт

Определяем потребную мощность электродвигателя по формуле:


где ŋпр - КПД, учитывающий потери мощности на преодоление трения в приводном механизме и в уплотнениях барабана; ŋпр = 0,7...0,8, принимаем ŋпр -0,75.

По найденной требуемой мощности подбираем двигатель марки 4А 315510 УЗ ГОСТ 19523-81.

Таблица 1. Техническая характеристика электродвигателя

Определяем передаточное число привода:


где Uред - передаточное число редуктора; принимаем Uред =16


Uз.п.- передаточное число зубчатой передачи

Определяем частоту вращения, угловые скорости, мощности и вращающие моменты на каждом валу:


Р2 = Р1×ŋред, принимаем ŋред = 0,97; Р2 = 53,5 × 0,97 = 51,9 кВт

T2 = Р2× 10 3 / ω2 = 51,9× 10 3 /3,86= 13446 Н.м.

На барабане


где ŋз.п. - КПД зубчатой передачи; ŋз.п. = 0,95.. .0,96; принимаем ŋз.п. = 0,95

Результаты расчётов заносим на рис. 5.2.

Подбираем стандартный редуктор цилиндрический марки Ц2У-400Н 16-12М-У3 ТУ2-056-165-77

Таблица. Техническая характеристика редуктора

Условное обозначение

Передаточное число

Номинальный вращающийся момент на ведомом валу

Размеры шеек валов







Ц2У-400Н-16-12М--УЗТУ2-056-165-77


5.4 Расчёт передач на прочность

5.4.1 Расчёт зубчатой передачи

Исходные данные:

1) передаваемый зубчатым венцом вращающий момент - Tз = 112057 Н.м;

2) передаточное число передачи Uз.п. = 8,78;

3) работа непрерывная, при временных перегрузках до 20%

Проектный расчёт

Так как передача укрыта кожухом, проектный расчёт ведём на контактную выносливость зубьев в последовательности, рекомендованной (3) - С. 35-46.

Определяем межосевое расстояние передачи:

где Ка = 49,5 - для прямозубых передач;

Кнβ – коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца; Кнβ = 1... 1,15; принимаем Кнβ = 1,15 по ГОСТ 2185-69;

ψва - коэффициент ширины зубчатого венца; ψва=в/А; принимаем ψва= 0,125;

[δ]н - допускаемое контактное напряжение, МПа;

δHeimb - предел контактный выносливости при базовом числе циклов;

KHL - коэффициент долговечности; KHL = 1;

Коэффициент безопасности; = 1,2.

Принимаем для изготовления подвенцовой шестерни сталь 45

ГОСТ 1050-88, имеющую δТ= 340 МПа, δв = 690 МПа, средняя твёрдость 200 НВ, термообработка улучшение, а для зубчатого венца - сталь 45Л ГОСТ 1050-88, δв = 520 МПа, δt = 290 МПа, средняя твёрдость - 180 НВ, термообработка - нормализация ((3) - С.34, табл. 3.3.). Для выбранных сталей находим:

Принимаем аω = 2500 мм по ГОСТ 2185-76

Определяем модуль: m = (0,01..0,02) аω = 2500 ×(0,01..0,02) = 25..50 мм;

принимаем m = 25 мм по ГОСТ 2185-76.

Определяем числа зубьев (суммарное, шестерни зубчатого венца)",

принимаем Z1 = 20; Z2 = ZΣ – Z1 = 200 - 20 = 180;

Уточняем межосевое расстояние:

аω = 0,5 ZΣ × m = 0,5 × 200 × 25 = 2500 мм - оно не изменилось;

Уточняем передаточное число:


увеличение Uз.п. составляет:

что допустимо.

Вычисляем параметры шестерни и зубчатого венца:

1) делительные диаметры – d1 (шестерни) = m × Z1 = 25 × 20 = 500 мм;

D2 (зубчатого венца) = m × Z2 = 25 × 180 = 4500 мм;

2) наружные диаметры – da1 = d1+ 2m = 500 + 2 × 25 = 550 мм;

Da2 = d2 + 2m = 4500 + 2 × 25 = 4550 мм;

3) диаметр впадины – df1 = d1 - 2,5m = 500 - 2,5 × 25 = 437,5 мм;

Df2 = d2 - 2,5m = 4500 - 2,5 × 25 = 4437,5 мм;

4) ширину – b1 = b2 +15 мм = 315 +15 мм = 330 мм;

B2 = аω × ψва = 2500 × 0,125 = 312,5 мм; принимаем b2= 315 мм

Определяем силы в зацеплении зубьев:

1) окружная

2) радиальная Fr = Ft × tg 20° = 49,8 × 10 3 × 0,364 = 18,1×10 3 Н; Определяем окружную скорость:


По vокр назначаем 8-ю степень точности передачи b1=330ММ


Определяем расчётные контактные напряжения зубьев:

где Zh - коэффициент, учитывающий форму сопряжённых поверхностей зубьев в полюсе зацепления; Zh = 1,76;

Zε - коэффициент, учитывающий суммарную длину контактных линий; Zε= 0,9;

Кн - коэффициент нагрузки; Кн = Кнα × Кнβ × Кнγ × Кнδ ; (3) - С. 32;

Кнα - коэффициент, учитывающий неравномерность распределения нагрузки между зубьями; Кнα = 1,06; (3) - С. 39, табл. 3.4;

Кнβ - коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца; зависит от ψвd = b2 = 315 = 0,07; Кнβ = 1; (3) - С. 39, табл. 3.5; d2 4500

Кнγ - динамический коэффициент, Кнγ= 1,05; (3) - С. 40, табл. 3.6;


Уточняем допускаемые напряжения на контактную выносливость зубьев:

где δHeimb 2 = 390 МПа; КHL = 1; = 1,2.

Zr- коэффициент, учитывающий влияние шероховатости сопряжённых

поверхностей; Zr= 0,9 - для 8-ой степени точности;

Zv - коэффициент, учитывающий влияние окружной скорости на контактную прочность зубьев; Zv = 1 ; (3) - С. 40.

Kl - коэффициент, учитывающий влияние смазочного материала на контактную прочность зубьев; Kl = 1;

Кхн - коэффициент, учитывающий влияние размеров зубчатого венца;


Контактная прочность зубьев обеспечена.

Проверочный расчёт зубьев передачи на выносливость при изгибе

Определяем допускаемое напряжение на изгиб:

где δFeim - предел выносливости при эквивалентном числе циклов, МПа;

δFeim = δ°Feim ×KFa ×KFd × KFc×KFL; (3) - C.44

KFa - коэффициент, учитывающий влияние шлифования переходной поверхности зубьев; KFa= 1;

KFd - коэффициент, учитывающий влияние деформационного упрочнения и электрохимической обработки переходной поверхности; KFd = 1;

KFc - коэффициент, учитывающий влияние двустороннего приложения нагрузки;

KFL - коэффициент долговечности; KFL = 1;

δ°Feim - предел выносливости при отнулевом цикле напряжений, соответствующий их базовому числу;

δ°Feim1 = 1,8 НВ = 1,8 × 180 = 324 МПа - для зубчатого венца;

δ°Feim2 = 1,8 × 200 = 360 МПа - для шестерни;

δFeim2 = 324 × 1 × 1 × 1=324 МПа - для зубчатого венца;

δFeim1= 360 × 1 × 1 × 1= 360 МПа - для шестерни;

Ys - коэффициент, учитывающий градиент напряжений, зависящий от модуля; интерполируя получаем –

Yr - коэффициент, учитывающий шероховатость переходной поверхности; Yri = Yr2 =1;

KxF2 - коэффициент, учитывающий размеры зубчатого колеса;


Коэффициент безопасности; = [

" = 1,75; (3) - С.45, табл. 3.9;

"2 - коэффициент, учитывающий влияние на изгибную выносливость способа получения заготовки; " =1,3 - для литых заготовок;


Определим отношение [δf]1/ Y1 - для шестерни и [δf]2 /Y2 для зубчатого венца; где Y1 и Y 2 -коэффициенты, учитывающие форму зуба; Y1 - 4,09; Y2=3,6;


Расчёт зубьев на изгиб ведём по зубчатому венцу.

Определяем расчётные напряжения изгиба:

KF2 - коэффициент нагрузки; KF2= KFβ × Kfv; (3) - C.42;

KFβ - коэффициент неравномерности распределения нагрузки, зависит от Хво = b2/d2= =315/4500 = 0,07; KFβ =l.

Kfv - динамический коэффициент; Kfv = 1,25; Kf2 = 1 × 1,25 = 1,25.

Выносливость зубьев на изгиб обеспечена, т. к. δf2 = 28,5 МПа < [δf]2 = 44,6 МПа.

5.5 Расчёт деталей машины на прочность

5.5.1 Расчёт вала подвенцовой шестерни

Исходные данные:

1) передаваемый валом вращающий момент-Т= Т2 = 13446 Н.м =13446 ×10 3 Н.мм;

2) угловая скорость ω =ω2= 3,86 рад/с;

3) окружная сила на шестерне -Ft = 49,8 × 10 3 Н;

4) радиальная сила на шестерне -Fr= 18,1 × 10 3 Н;

Проектировочный расчёт

Определяем диаметр конца вала (под полумуфту) из расчёта только на кручение:


где Мк - крутящий момент, действующий в сечениях конца вала, Н.мм;

Мк=T= 13446 × 10 3 Н.мм;

[ĩ]к - допускаемое напряжение кручения, МПа (н/мм 2); [ĩ]к = 20.. .30 н/мм 2 ;

принимаем [ĩ]к = 30 МПа (н/мм 2)

принимаем по ГОСТ 6036-69 d =150 мм.

Проверочный расчёт вала

Вычерчиваем схему подвенцовой шестерни и назначаем диаметры шеек вала (см.рис. 5.4а): слева - направо:

1) d1 = 150 мм - под посадку полумуфты;

2) dп = 170 мм - под посадку подшипников;

3) dш =190 мм - под посадку подвенцовой шестерни.

Вычерчиваем расчётную схему вала (рис. 7.46). На шестерню действуют взаимно перпендикулярные окружная Ft и радиальная Fv силы. Заменим их действие на вал действием результирующей силы:

Сила Fрез пересекает ось вала в точке "С" под прямым углом. Повернём вал так, чтобы Fрез была направлена вертикально и вычертим расчётную схему (см. рис. 7.4в). На вал действует плоская система сил Fрез, реакции подшипников Ra и Re. Т. к. сила Fрез расположена на одинаковом расстоянии от подшипников А и Б, то их реакции направлены, как показано на схеме, и равны:

Ra = Rb = Fрез/2 = 53 × 10 3 /2 = 26,5 × 10 3 Н = 26,5 КН.

Выбираем для изготовления вала сталь 45 ГОСТ 1050-88, имеющую следующие механические свойства: предел прочности δв = 890 МПа (н/мм 2), предел текучести δт = 650 МПа (н/мм 2), предел выносливости по нормальным напряжениям δ-1 = 380

МПа (н/мм 2), предел выносливости по касательным напряжениям

ĩ -1 = 0,58 × δ-1=0,58 × 380 = 220 МПа (н/мм 2),

средняя твердость - 285 НВ, термообработка -улучшение.

Определяем изгибающие моменты в сечения вала:

Миа = Мив = Миб = 0; Мис = Ra × 0,4 = 26,5 × 10 з × 0,4 = 10,6 × 10 3 Н.м.

Строим эпюру изгибающих моментов (рис. 5.4г).

Вращающий момент передаётся от середины ступицы полумуфты, насаженной на крайнюю левую шейку вала (см. рис. 5.4) до середины подвенцовой шестерни по часовой стрелке (если смотреть со стороны полумуфты). Под его действием в сечениях вала на участке ВС возникают крутящие моменты, одинаковые в каждом сечении и равные: Мк = Т - 13446 Н.м. Строим эпюру крутящих моментов (рис. 5.4д). Как видно из эпюр Ми и Мкр, опасным является сечение вала в точке "С" диаметром d=220 мм = 0,22 м. Определяем действующие в нём напряжения:

1) изгиба –

2) кручения –


Напряжения изгиба изменяются по симметричному циклу с амплитудой, равной: δа = δи = 10,0 МПа, (н/мм 2). Напряжения кручения изменяются по отнулевому циклу с амплитудой, равной: ĩа = ĩк/2 = 6,3/2 = 3,15 МПа. В сечении вала "С" - два концентрата напряжения: шпоночный паз с галтелью и посадка с натягом. Согласно примечанию в (2) - С. 15, табл. 02, в расчёт принимаем концентрацию напряжений от посадки шестерни. Определяем для опасного сечения "С" вала коэффициенты, влияющие на концентрацию напряжений:

1) коэффициент влияния шероховатости поверхности - Kf = 1,2 (2) - С. 15, табл. 03;

2) коэффициент влияния поверхностного упрочнения (без него) - Kv = 1,0; (2) - С. 15, табл. 04;

3) отношение эффективных коэффициентов концентрации напряжений


4) коэффициент концентрации для опасного сечения


Определяем пределы выносливости вала в опасном сечении:

Определяем расчётные коэффициенты запаса прочности вала в опасном сечении по нормальным и касательным напряжениям:


Определяем общий расчётный коэффициент запаса прочности вала в сечении "С":

Выносливость вала обеспечивается, т. к. S > [S] = 2,5.

Рис. 5.4. Схемы к расчёту вала

5.6 Подбор и расчёт на прочность шпонок

5.6.1 Подбор и расчёт шпоночного соединения "вал -шестерня"

Исходные данные:

1) диаметр вала d = dш = 190 мм;

2) передаваемый шпоночным соединением вращающий момент Т = 13446 Н.м = 13446 × 10 3 Н.мм;

3) нагрузка переменная, с временными перегрузками на 20%

По диаметру вала d =190 мм для соединения с ним шестерни принимаем призматическую шпонку со скругленными торцами, имеющую следующие размеры поперечного сечения по ГОСТ 23360-78:

1) ширина b = 45 мм;

2) высота h = 25 мм;

3) глубина паза t1 = 15 мм.

Принимаем для изготовления шпонки сталь 45 ГОСT 1050-88, имеющую допускаемые напряжения на смятие при переменной нагрузке [δ]см = 70... 100 Н/мм 2 ; принимаем [<5]см = 80 Н/мм 2 . (2) - С. 77

Полная длина шпонки равна: ℓ = ℓр +b = 208 + 45 = 253 мм; принимаем по ГОСТ 23360-78 I = 250 мм. Записываем условное обозначение шпонки: 45x25x250 ГОСТ 23360-78. Длину ступицы шестерни принимаем на 10 мм больше длины шпонки:

ℓст.ш. = 250+10 = 260мм.

5.6.2 Расчёт шпоночного соединения "вал - полумуфта"

Исходные данные:

1) диаметр вала d = dп = 150 мм;

2) передаваемый вращающий момент Т=13446 Н.м;

3) нагрузка-переменная, с временными перегрузками до 20%.

Принимаем призматическую шпонку с обоими скруглёнными концами, имеющую размеры поперечного сечения по ГОСТ 23360-78:

1) ширину b = 36 мм;

2) высоту h = 20 мм;

3) глубину паза t1= 12 мм.

Материал шпонки - сталь 45 ГОСT 1050-88, допускаемое напряжение на смятие [δ]см = 80 H/мм 2 (см. п. 7.6.1.).

Расчётная длина шпонки равна:

Т. к. длина шпонки достаточно большая, принимаем две шпонки расчётной длиной ℓp1 = ℓр/2= 165 мм.

Полная длина каждой шпонки равна: ℓ = ℓр + b= 165+ 36 = 201 мм; принимаем по ГОСТ 23360-78 I = 200 мм. Обозначение шпонки: 36×20×200 ГОСТ 23360-78. Длина шейки вала определится длиной ступицы полумуфты после её подбора.

5.7 Подбор и расчёт подшипников

5.7.1 Подбор и расчёт подшипников подвенцовой шестерни

Исходные данные:

1) угловая скорость вала ω =ω2 = 3,86 рад/с;

2) диаметр вала d = dп = 170 мм;

3) радиальная реакция подшипника Rr = Ra = 26,5 КН, осевая - отсутствует;

4) нагрузка на подшипник-переменная, с временной перегрузкой на 20%

С учётом условий работы намечаем к установке самоустанавливающийся радиальный сферический двухрядный роликоподшипник № 1634 ГОСТ 5720-75, имеющий следующие данные: d= 170 мм; Д = 360 мм, В = 120 мм, Сдин = 252 КН. Определяем эквивалентную динамическую радиальную нагрузку на подшипник:

Re = (XV× Rr + УRа) × Кδ × К ĩ ; (2)-С. 330.

где X, У - коэффициенты радиальной и осевой нагрузок; X = 1;

V - коэффициент, учитывающий зависимость долговечности подшипника от того, какое из колец вращается; V= 1;

Кδ - коэффициент безопасности, учитывающий влияние характера нагрузок на долговечность подшипника; Кδ = 1,3... 1,8; принимаем Кδ = 1,6;

Кĩ - коэффициент, учитывающий влияние температуры на долговечность подшипника; Кĩ = 1. (2) - С. 331

Re = X× V×Rr×Kδ×Kĩ =l × 1 ×26,5 × 1,6 = 42,4 КН.

Определяем требуемую расчётную динамическую радиальную грузоподъёмность подшипника:

где р - показатель степени; р -10/3; Lh- требуемая долговечность подшипника; Lh = 4000.. .30000 ; принимаем Lh = 25000.


Долговечность выбранного подшипника обеспечивается, т. к. Счдин = 141,4 КН < Счдин = 252 КН.

5.8 Подбор и расчёт соединительных муфт

5.8.1 Подбор и расчёт муфты, соединяющей ведомый вал редуктора с валом подвенцовой шестерни

Исходные данные:

1) диаметр вала d= dм =150 мм;

2) передаваемый вращающий момент Т= Т2 = 13446 Н.м;

3) условия работы - режим - непрерывный, нагрузки - переменные, с временным возрастанием до 120%.

Учитывая большую величину возрастающего момента и условия работы, принимаем к установке зубчатую муфту. Определяем расчётный вращающий момент для её выбора:

Тр = К×Т; (3)-С. 268;

где К - коэффициент, учитывающий условия эксплуатации; К = 1,15... 1,2; принимаем К = 1,2; (3)-С. 272, табл. 11.3;

Т= 1,2 × 13446 = 16135 Н.м = 16,135 КН.м

По диаметру вала d и Тр выбираем зубчатую муфту и записываем её условное обозначение: муфта 23600-150-МЗ-Н ГОСТ 5006-55. Выбранная муфта имеет следующие параметры:

1) крутящий момент - 23600 Н.м.;

2) диаметр посадочного отверстия - d= 150 мм;

3) длина ступицы полумуфты - ℓ =210 мм;

j4) допустимая частота вращения [n] = 1900 мин 1

5.8.2 Подбор и расчёт муфты, соединяющей валы электродвигателя и редуктора

Исходные данные:

1) диаметр вала d = 75 мм, длина шейки ℓ = 140 мм;

2) передаваемый вращающий момент Т=Т1 = 866 Н.м;

3) условия работы - переменные нагрузки с кратковременным возрастанием до 120%.

Принимаем к установке муфту упругую втулочно-пальцевую (МУВП). Расчётный момент для выбора полумуфты - Tр = К × T= 1,2 × 866 = 1040 Н.м. Выбираем муфту и записываем её обозначение: МУВП 2000-75-11.-УЗ ГОСТ 21424-75. Муфта имеет параметры:

1) номинальный вращающий момент - 2000 Н.м;

2) диаметр посадочного отверстия – d= 75 мм, длина -ℓ = 140 мм;

3) посадочное отверстие цилиндрическое;

4) наружный диаметр - 250 мм, тип I, исполнение 1.

5.9 Правила технической эксплуатации машины и техники безопасности при её обслуживании

5.9.1 Правила технической эксплуатации

Сушильный барабан работает в непрерывном автоматическом режиме. Длительная и безопасная его работа обеспечивается грамотной эксплуатацией при соблюдении ниже изложенных правил. При приёмке и сдаче смены обслуживающий персонал должен осмотреть все его узлы и детали и выявить их техническое состояние. При осмотре необходимо обращать внимание на:

1) состояние и надёжность узлов крепления электродвигателя, редуктора, корпусов подшипников, венцовой и подвенцовой шестерен, роликоопор;

2) степень износа и наличие трещин и поломок у зубьев венцовой и подвенцовой шестерён, корпуса барабана, бандажей, роликов;

3) наличие и качество смазки зубчатой передачи, подшипников и редуктора, отсутствие её подтеканий.

Во время работы сушильного барабана необходимо:

– Следить за равномерностью подачи материала, т. к. неравномерная подача снижает его производительность.

–Следить за тем, чтобы посторонние предметы вместе с материалом не попадали внутрь барабана, т. к. это может привести к аварии.

–По приборам следить за температурой в различных зонах барабана и корректировать её за счёт увеличения или уменьшения подачи горючей смеси в горелки, а также изменением её состава (соотношения воздуха и топлива). Кроме того, на величину температур влияет степень разряжения внутри барабана, от которой зависит скорость движения газов в барабане и их теплоотдача (при уменьшении скорости она увеличивается).

–Периодически, путём взятия контрольных проб и их анализа определять влажность материала на выходе из барабана и при отклонениях её сверх допустимых пределов - откорректировать изменением подачи топлива, его состава и разряжения внутри барабана.

– Следить за нагревом подшипников роликоопор, подвенцовой шестерни, редуктора. Допускается нагрев до 65°С.

–При появлении стуков и шумов, не характерных нормальной работе сушильного барабана, его необходимо немедленно остановить, выявить и устранить причину. Останавливают сушильный барабан только в аварийных ситуациях и для проведения ремонтов и технических обслуживании. Для этого останавливают питатель, вырабатывают весь имеющийся в барабане материал, прекращают подачу топлива в горелки и, не останавливая электродвигатель привода и дымосос, охлаждают корпус барабана до 40°С, после чего его выключают. Остановка разогретого барабана допускается не более, чем на 15 минут. Более длительная остановка может вызвать прогиб корпуса. Пуск сушильного барабана после ремонта занимает несколько часов, т. к. его корпус предварительно необходимо разогреть на холостом ходу до рабочих. Температур, после чего подачу материала начинают с минимальной и увеличивают до номинальной в соответствии с режимом, устанавливаемым заводом-изготовителем. Перед пуском барабан тщательно осматривается, и все обнаруженные неисправности устраняются.

5.9.2 Правила техники безопасности персонала

Безопасность персонала, обслуживающего сушильный барабан, обеспечивается при выполнении и соблюдении изложенных ниже правил:

– Система управления сушильным агрегатом должна иметь электрическую блокировку, обеспечивающую следующий порядок пуска: дымосос - ленточный разгрузочный конвейер - сушильный барабан - ленточный питатель, а при остановке - обратный порядок отключения. Кроме того, при падении разряжения в топке для сжигания топлива ниже допустимого должна прекращать подачу топлива в горелку. Чистку, мойку барабана производят только при его остановках, используя для этого ломики, металлические щётки, лопаты, скребки, шланги со сжатым воздухом и водой, ветошь, керосин, дизельное топливо.

– Опорные и упорные ролики, венцовая и подвенцовая шестерни должны быть ограждены сплошными металлическими ограждениями (кожухами), а газопроходы

–тепло изолированы для предупреждения возможности ожогов обслуживающего персонала.

– Сушильный барабан для предупреждения Q пуске должен оборудоваться световой и звуковой сигнализацией (мигающими электрическими лампами красного цвета и электрическим звонком), которые должны обеспечивать видимость и слышимость сигналов для всех работающих в сушильном отделении.

– Уплотнения корпуса сушильного барабана и степень разряжения внутри его, а также герметичность загрузочного и разгрузочного устройств должны предотвращать проникновение топочных газов в рабочее помещение. При падении разряжения в пылевой камере сушильного барабана ниже нормы автоматика должна отключать подачу топлива в горелку. Степень загазованности рабочего помещения сушильного отделения должна постоянно контролироваться забором и экспресс-анализом проб воздуха. При загазованности, превышающей санитарные нормы, работа сушильного барабана должна быть запрещена. Пылеулавливающие установки сушильных агрегатов должны обеспечивать очистку газов и воздуха от пыли перед выбросом в атмосферу не ниже санитарных норм.

– Для защиты обслуживающего персонала от поражения электрическим током корпуса электрощитов, электродвигателя сушильного барабана должны иметь заземляющие устройства, подсоединённые к цеховому заземляющему контуру.

– К обслуживанию сушильного барабана допускаются лица, прошедшие обучение, стажировку и инструктаж по технике безопасности, сдавшие квалификационный экзамен.

– При осмотре сушильного барабана необходимо оценить техническое состояние и надёжность закрепления всех ограждений и заземляющих устройств. Все обнаруженные неисправности должны устранятся. Работа при неисправных ограждениях и заземлении категорически воспрещается.

– Запрещается смазывать, устранять какие-либо неполадки и производить ремонт при работающем приводе. Для этого необходимо остановить барабан, отключить его электродвигатель с удалением предохранителей, на пусковых устройствах вывешивают плакаты с надписью "Не включать - работают люди!"

– Внутренний осмотр и ремонт корпуса должен осуществляться не менее, чем двумя рабочими, один из которцх выполняет роль страхующего, по наряду-допуску. Для освещения должны /использоваться переносные лампы в закрытом исполнении напряжением не свыше 12 В.

– Во время розжига и эксплуатации сушильного барабана запрещается открывать двери топок, стоять против них, наблюдать за горением топлива без защитных очков с затемнёнными стёклами, находиться под его корпусом во время работы.

5.10 Карта и схема смазки машины

Схема смазки сушильного барабана разрабатывается заводом-изготовителем и представляет упрощённую схему, на которой указывается положение всех его точек смазки. Точки смазки на схеме нумеруются.

Рис. 5.5. Схема смазки сушильного барабана

Карта смазки представляет таблицу, содержащую наименование точек смазки, режимы и способы смазки каждой из них с указанием применяемой смазки.

Таблица 3. Карта смазки сушильного барабана

Наименование точки смазки

Смазочный материал

Способ смазки

Периодичность, мес.

добавления смазки

Замены смазки

Подшипники Роликов опорных

Подшипники роликов упорных

солидол УС-2 ГОСТ 4366-76

Ручная колпачковая

по мере выработки

редуктор

Масло индустриальное И-50А ГОСТ 20799-75

картерный

зубчатая муфта

солидол УС-2 ГОСТ 4366-76

шприцевание

венцовая и подвенцовая шестерни

Масло автотракторное АК-15 ГОСТ 10541-78

картерный

Подшипники подвенцовои шестерни

Масло индустриальное И-50А ГОСТ 20799-75

централизованныи под давлением


6. Экономическая часть

Экономическая часть дипломного проекта ставит своей целью определение технико-экономического обоснования капитального ремонта сушильного барабана. Для определения технико-экономических показателей капитального ремонта сушильного барабана необходимо рассчитать:

– материальные затраты на капитальный ремонт сушильного барабана;

–заработную плату рабочих;

–смету затрат на капитальный ремонт сушильного барабана.

6.1 Расчет стоимости материальных затрат на капитальный ремонт сушильного барабана

Стоимость материальных затрат определяется исходя из удельных норм расхода материалов на узлы и детали и прейскурантных цен.

Таблица 6.1.Стоимость материальных затрат.

Наименование материалов и комплектующих

Единицы измерения

Удельная норма расхода

Потребность, всего

Единицу измерения

тыс. руб.

Сумма тыс. руб.

Барабан Ст09Г2С

Бандаж СтЗОГСЛ

Опорный ролик Ст35

Упорный ролик Ст35

Подвенцовая шестерня Ст40Х

Приводной вал Ст40Х

Рама роликоопор СтЗ

Ось ролика Ст45

Вал подвенцовой шестерни Ст45



Неучтенные материалы-10% от учтенных







Электродвигатель 55кВт



Редуктор Ц2У-400Н


Подшипник 1634


Зубчатая муфта






Неучтенные комплектующие - 10% от учтенных








6.2 Расчет затрат труда на капитальный ремонт сушильного барабана

Расчет затрат труда определяется трудоемкостью капитального ремонта оборудования. Полная нормативная трудоемкость одного капитального ремонта сушильного барабана составляет 800 чел-ч.

6.2.1 Расчет заработной платы рабочих

Заработная плата рабочих определяется исходя из трудоемкости капитального ремонта сушильного барабана и часовой тарифной ставки рабочего IV разряда с нормальными условиями труда.

Таблица 6.2. Заработная плата рабочих.

Доплата к заработной плате по тарифу за выполнение задания - 70% тарифной ставки (Положение о премировании):

Звып = З тар × 0,7,тыс. руб.

Звып = 1968 × 0,7 = 1377,6 тыс. руб.

Оплата в ночное время 5% тарифной ставки:

Зноч = З тар × 0,05, тыс. руб.

З ноч = 1968 × 0,05 = 98,4 тыс. руб.

Основной фонд заработной платы составляет:

Зосн = Зтар + Звып + Зноч, ТЫС. руб.

3 0СН =1968 + 1377,6 + 98,4 = 3444 тыс. руб.

Дополнительная зарплата - 12% от основного фонда заработной платы:

Здоп = Зосн × 0,12, тыс. руб.

Здоп = 3444 × 0,12 = 413,28 тыс. руб.

Общий фонд заработной платы составит:

3 0бщ =3осн + Здоп, ТЫС. руб.

3 0бщ = 3444 + 413,28 = 3857,28 тыс. руб.

6.2.2 Расчет сметы затрат на капитальный ремонт сушильного барабана

В состав затрат включаются следующие налоги и сборы:

1.отчисления на социальное страхование - 35% от общего фонда заработной платы:

Сотч = 3 0бщ × 0,35, тыс. руб.

С отч = 3857,28 × 0,35 = 1350 тыс. руб.

2. чрезвычайный налог - 3% от общего фонда заработной платы:

Н ч = 3 0бщ × 0,03, тыс. руб.

Н ч = 3857,28 × 0,03 = 115,72 тыс. руб.

3. отчисления в фонд занятости - 1 % от общего фонда заработной платы:

Нф = 3 0бщ × 0,01, тыс. руб.

Нф = 3857,28 × 0,01 = 38,57 тыс. руб.

Общепроизводственные расходы (120-150% от основной заработной платы):

П р = Зосн × (1,2-1,5),тыс. руб.

П р = 3444 × 1,2 = 4132,8 тыс. руб.

Общехозяйственные расходы (150-230 % от основной заработной платы):

О р = Зосн × (1,5-2,3), тыс. руб.

О р = 3444 × 1,5 = 5166 тыс. руб.

Смета затрат на капитальный ремонт сушильного барабана составляется по следующей форме:

Таблица 6.3. Смета затрат

Статьи затрат

Обозначения

Сумма тыс. руб.

1. Материалы

2. Комплектующие

3. Основная заработная плата

4. Дополнительная заработная плата

5.Отчисление на социальное страхование

6. Чрезвычайный налог

7. Отчисления в фонд занятости

8. Общепроизводственные расходы

9.Общехозяйственные расходы


Считаю, что капитальный ремонт сушильного барабана, выполненный силами ремонтно-механического цеха предприятия, целесообразен, так как покупка, стоимость нового сушильного барабана обойдется предприятию в, 70664 тыс.руб.

Проведя капитальный ремонт сушильного барабана собственными силами предприятие экономит 31798,6344 тыс.руб.

Литература

1. Лоскутов Ю.А и др. Механическое оборудование предприятий по производству вяжущих строительных материалов. – М.: "Машиностроение", 1986.

2. Ильевич А.П. Машины и оборудование для заводов по производству керамики и огнеупоров. М. Высшая школа, 1979.

3. Чернавский С.А. Курсовое проектирование деталей машины. М. Машиностроение, 1987.

4.Куклин Н.Т., Куклина Г.С. Детали машин. М. Высшая школа, 1987.

5.Банит Ф.Г. и др. Эксплуатация, ремонт и монтаж оборудования промышленности строительных материалов. М. Стройиздат, 1971.

6.Дроздов Н.Е. Эксплуатация, ремонт и испытание оборудования строительных материалов, изделий и конструкций. М. Высшая школа, 1979.

7.Махнович А. Т., Боханько Г.И. Охрана труда и противопожарная защита на предприятиях промышленности строительных материалов. М. Стройиздат, 1978.

8.Самойлов М.В. и др. Основы энергосбережения. Мн. БГЭУ, 2002.

9.Сапожников М.Я., Дроздов Н.Е. Справочник по оборудованию заводов строительных материалов. Стройиздат, 1970.

10.Соколовский Л.В. Энергосбережение в строительстве. Мн. НП ООО "Стринко", 2000.

gastroguru © 2017