Почему при блочной системе увеличивается сила. Простые механизмы

Блок - это разновидность рычага, представляет собой колесо с желобом (рис.1), через желоб можно пропустить веревку, трос, канат или цепь.

Рис.1. Общий вид блока

Блоки подразделяют на подвижные и неподвижные.

У неподвижного блока ось закреплена, при подъеме или опускании груза она не поднимается и не опускается. Вес груза, который поднимаем, обозначим P, прикладываемую силу обозначим F, точку опоры - O (рис.2).

Рис.2. Неподвижный блок

Плечом силы P будет отрезок OA (плечо силы l 1 ), плечом силы F отрезок OB (плечо силы l 2 ) (рис.3). Эти отрезки являются радиусами колеса, тогда плечи равны радиусу . Если плечи равны, то вес груза и сила, которую мы прикладываем для подъёма, численно равны .

Рис.3. Неподвижный блок

Такой блок не дает выигрыша в силе.Из этого можно сделать вывод, что неподвижный блок применять целесообразно для удобства подъема, проще поднимать груз вверх, применяя силу, которая направлена вниз.

Устройство, в котором ось может подниматься и опускаться вместе с грузом. Действие аналогично действию рычага (рис.4).

Рис. 4. Подвижный блок

Для работы этого блока один конец веревки закрепляется, ко второму концу приложим силу F, чтобы поднять груз весом P, груз прикреплен к точке A. Точкой опоры при вращении будет точка О, потому что в каждый момент движения блок поворачивается и точка O служит точкой опоры (рис.5).

Рис. 5. Подвижный блок

Значения плеча силы F составляет два радиуса .

Значение плеча силы P составляет один радиус.

Плечи сил отличаются в два раза, по правилу равновесия рычага, силы отличаются в два раза. Сила, которая необходима, чтобы поднять груз весом P, будет в два раза меньше, чем вес груза . Подвижный блок дает преимущество в силе в два раза.

На практике применяют комбинации блоков для изменения направления действия применяемой силы для подъема и ее уменьшения в два раза (рис.6).

Рис. 6. Комбинация подвижного и неподвижного блоков

На занятие мы познакомились с устройством неподвижного и подвижного блока, разобрали, что блоки - это разновидности рычагов. Для решения задач по этой теме необходимо помнить правило равновесия рычага: отношение сил обратно пропорционально отношению плеч этих сил.

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Class-fizika.narod.ru ().
  2. School.xvatit.com ().
  3. Scienceland.info ().

Домашнее задание

  1. Узнайте самостоятельно, что собой представляет полиспаст и какой выигрыш в силе он дает.
  2. Где применяют в быту неподвижные и подвижные блоки?
  3. Как легче подниматься вверх: лезть по веревке или подниматься при помощи неподвижного блока?

Блоки используют для поднятия грузов. Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускают веревку, трос или цепь. Неподвижным называют такой блок, ось которого закреплена и при подъеме грузов она не поднимается и не опускается (рис. 1, а, б).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи приложенных сил равны радиусу колеса. Следовательно, из правила моментов вытекает, что неподвижный блок выигрыша в силе не дает . Он позволяет менять направление действия силы.

На рисунке 2, а, б изображен подвижный блок (ось блока поднимается и опускается вместе с грузом). Такой блок поворачивается около мгновенной оси О. Правило моментов для него будет иметь вид

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяя направление действия силы, позволяет, например, поднимать груз, стоя на земле.

Описание устройства

Блок - простой механизм, представляющий собой колесо с желобом по окружности для каната или цепи, способное свободно вращаться вокруг своей оси. Тем не менее, верёвка, переброшенная через древесную ветку тоже в какой-то степени является блоком.

Зачем же нужны блоки?

В зависимости от своей конструкции блоки могут позволить изменять направление приложенной силы (например, для того, чтобы поднять некий груз, подвешенный на верёвке, переброшенной через древесную ветку, необходимо тянуть другой конец верёвки вниз... или в сторону). При этом, данный блок не даст выигрыша в силе. Такие блоки называются неподвижными , так как ось вращения блока жёстко закреплена (конечно, если ветка не сломается). Такие блоки применяются для удобства. Например, при поднятии груза на высоту гораздо легче тянуть веревку с грузом перекинутую через блок вниз , прикладывая к ней вес своего тела, чем стоять наверху и подтягивать к себе груз с веревкой.

Кроме этого, существуют блоки, которые позволяют не только изменять направление приложенной силы, но и дают выигрыш в силе. Такой блок называется подвижным и он работает с точностью до наоборот нежели подвижный блок.

Для того, чтобы получить выигрыш в силе необходимо жёстко закрепить один конец верёвки (например привязать её к ветке). Далее на верёвку устанавливается колесо с желобом к которому и подвешивается груз (это необходимо сделать таким образом, чтобы колесо с грузом могло свободно ездить по нашей верёвке). Теперь, потянув за свободный конец верёвки вверх, мы увидим, что блок с грузом также начали подниматься.

Усилия, которые нам необходимо будет затратить для подъёма груза таким образом будут примерно в 2 раза меньше нежели вес груза вместе с блоком. К сожалений данный вид блока не позволяет изменять направление силы в широких пределах, поэтому его часто используют в паре с неподвижным (жёстко закреплённым) блоком.

Описание опыта

Вначале на видео происходит демонстрация принципа работы неподвижного блока: к жёстко закреплённому блоку подвешиваются грузы одинаковой массы, при этом блок находится в равновесии. Но стоит лишь подвесить один лишний грузик, как сразу же начинается перевес в большую сторону.

Далее, используя систему из подвижного и неподвижного блоков, мы пытаемся добиться состояния равновесия, подбирая оптимальное количество грузиков, подвешенных с обеих сторон. В итоге блок уравновешивается,когда количество грузиков, подвешенных к подвижному блоку, становиться в два раза больше, чем грузиков, подвешенных к свободному концу нити.

Таким образом можно сделать вывод, что подвижный блок даёт двукратный выигрыш в силе .

Это интересно

А вы знаете, что подвижные и неподвижные блоки широко используются в передаточных механизмах автомобилей? Кроме этого, блоки используются строителями для подъёма больших и малых грузов (ну или самих себя. Например, при ремонте внешних фасадов зданий, строители часто работают в люльке, которая может перемещаться между этажами. По завершении работы на этаже, рабочие достаточно быстро могут передвинуть люльку на этаж выше, используя при этом лишь собственную силу). Блоки получили такое широкое распространение из-за простоты их сборки и удобства работы с ними.

Ось которого закреплена при подъеме грузов, не поднимается и не опускается. Представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната , цепи , ремня и т. п. Если ось блока помещается в обоймах, прикреплённых на балке или стене, такой блок называется неподвижным (то есть ось блока закреплена); если же к этим обоймам прикрепляется груз, и блок вместе с ними может двигаться, то такой блок называется подвижным.

Неподвижный блок употребляется для подъёма небольших грузов или для изменения направления силы.

Условие равновесия блока:

F = f m g {\displaystyle ~F=fmg} , где

F {\displaystyle F} - прилагаемое внешнее усилие, m {\displaystyle m} - масса груза, g {\displaystyle g} - ускорение свободного падения, f {\displaystyle f} - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок - 1,1).

При отсутствии трения для подъема нужна сила, равная весу груза.

Подвижный блок имеет свободную ось и предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом; отсюда, если веревки параллельны (то есть когда дуга, обхватываемая веревкой, равна полуокружности), то для подъёма груза потребуется сила вдвое меньше, чем вес груза, то есть:

F = 1 2 f m g {\displaystyle ~F={1 \over {2}}fmg}

При этом груз пройдёт расстояние, вдвое меньшее пройденного точкой приложения силы F, соответственно, выигрыш в силе подвижного блока равен 2.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: Во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии . Иными словами, работа , совершаемая при перемещении груза на какое-либо расстояние без использования блока, равна работе, затрачиваемой при перемещении груза на то же самое расстояние с применением блока при условии отсутствия трения. В реальном блоке всегда присутствуют некоторые потери.

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст . Простейшая такая система изображена на рисунке и даёт выигрыш в силе в 2 раза.

В отличие от шкива , блок вращается на оси свободно и обеспечивает исключительно изменение направления движения ремня или каната, не передавая усилия с оси на ремень или с ремня на ось.

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.

gastroguru © 2017